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Introduction: Two leading aspects

We consider stochastic PDE of the type

∂tu = ∆(|u|m−1u) + ∇ · (A(x ,u)◦dβt) on Td × (0,∞),
u = u0 on Td ×{0},

for d ≥ 1, m ∈ (0,∞),

∇ · (A(x ,u)◦dβt) =
d

∑
i=1

n

∑
j=1

∂xi (A
i ,j (x ,u)◦dβ

j
t ).

Two motivating aspects:

1 Generation of stochastic �ows?

2 Models/applications.
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Introduction: Two leading aspects Generation of stochastic �ows by SPDE

Generation of stochastic �ows by SPDE

Motivation: Application of methods from dynamical systems to stochastic dif-
ferential equations (multiplicative ergodic theorem, invariant manifolds, Lya-
punov exponents).

Problem: Do solutions to stochastic (partial) di�erential equations generate
stochastic (semi-)�ows?
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Introduction: Two leading aspects Generation of stochastic �ows by SPDE

A map ϕ : R+×R+×Ω×H → H is a stochastic semi-�ow if

ϕ(t,s;ω)x = ϕ(t, r ;ω)ϕ(r ,s;ω)x , ∀s ≤ r ≤ t, ω ∈ Ω, x ∈ H. (1)

Consider SDE

dX x
t (ω) = f0(X x

t (ω))dt + f1(X x
t )◦dβt(ω) on (s,∞) (2)

X x
s = x ∈ H,

with β a Brownian motion on (Ω,F ,P).

Obstacle: X x
t solves (2) for each s, x , P-a.s.: There is a Ω0 = Ω0(s,x)⊆ Ω

with P[Ω0] = 1 such that (2) it true for all ω ∈ Ω0.

Can only expect (1) for P-a.e. ω ∈ Ω (possibly depending on s, x).
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Introduction: Two leading aspects Generation of stochastic �ows by SPDE

Finite dimensional SDE
Kolmogorov continuity theorem (e.g. [Kunita, 1980's])
Alternative: rough path theory [Lyons, 1998]

fixed rough path
continuous

measurable

measurable, 

In�nite dimensional SDE
Kolmogorov continuity theorem does not apply
A�ne linear noise: transformation method (e.g. [Flandoli, 1995])
Semilinear SPDE

du = Ludt+ f (u,∇u)dt+H(x ,u)◦dβt .

Rough path theory [Gubinelli, Tindel; 2010], [Deya, Gubinelli, Tindel, 2012], [Diehl, Friz;
2012], [Hesse, Neamµu, 2018].

Stochastic conservation laws: [Lions, Perthame, Souganidis; 2014], [G., Friz; 2014],
[Lions, Perthame, Souganidis; 2015], [G., Souganidis; 2015], [G., Souganidis; 2016], [Deya,
Gubinelli, Hofmanova, Tindel, 2016].

Open Problem: Stochastic �ow for

∂tu =∆u+ ∇ · (A(x ,u)◦dβt).
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Introduction: Two leading aspects Applications

Recall: We consider

∂tu = ∆(|u|m−1u) + ∇ · (A(x ,u)◦dβt) on Td × (0,∞),
u = u0 on Td ×{0},

for d ≥ 1, m ∈ (0,∞).

In particular
∂tu = ∆u+div f (x ,u) + ∇ · (A(x ,u)◦dβt).

Applications:

Limits of weakly interacting di�usions (mean �eld games)
Fluctuating hydrodynamics for zero range process
Dean-Kawasaki model (passive scalars in turbulent �uid with thermal noise)
Thin �lm equations
Geometric PDE
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Introduction: Two leading aspects Applications

Limits of weakly interacting di�usions:

Mean �eld interacting particles, for i ∈ {0, . . . ,L},

dX i
t = DL(X i

t ,
1

L ∑
j 6=i

δ
X j
t
)dW i

t + σ
L(X i

t ,
1

L ∑
j 6=i

δ
X j
t
)◦ dβt for t ∈ (0,∞),

where L≥ 1, and βt , {W i
t }Li=1 are independent Brownian motions.

Informally, from [Lasry, Lions; 2006], the density m of the empirical law of the
solution Xt = (X 1

t , . . . ,X
L
t ) conditioned on β , in the mean �eld limit L→ ∞,

satis�es{
∂tm = 1

2∆
(
D2(m)m

)
+ ∇ · (σ(x ,m)m ◦ dβt) in Td × (0,∞),

m = m0 on Td ×{0},

provided the nonlocal nonlinearities σL→ σ and DL→ D in approriate sense.
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Introduction: Two leading aspects Applications

Fluctuating hydrodynamics for zero range process:

Hydrodynamic limit of a (symmetric) zero range particle process ρε → ρ0

satis�es
∂tρ

0 = ∂xx

(
Φ(ρ0)

)
in R× (0,∞),

with Φ the mean local jump rate. E.g. Φ(ρ) = ρ |ρ|m−1.
Fluctuations about hydrodynamic limit [Ferrari, Presutti, Vares; 1988]: Limit
of 1

ε
(ρε −ρ0)→ ρ1 satis�es

∂tρ
1 = ∂xx

(
Φ′(ρ

0)ρ
1
)

+ ∂x (
√

Φ(ρ0)dWt).

Large deviations: [Dirr, Stamatakis, Zimmer; 2016]

∂tρ = ∂xx (Φ(ρ)) + ∂x

(√
εΦ(ρ)dWt

)
.

Benjamin Gess Stochastic �ows for SPDE 9 / 22



Main results

Main results

1 Introduction: Two leading aspects
Generation of stochastic �ows by SPDE
Applications

2 Main results

3 Aspects of the proof

Benjamin Gess Stochastic �ows for SPDE 10 / 22



Nonlinear di�usions with nonlinear noise

Recall

∂tu = ∆(|u|m−1u) + ∇ · (A(x ,u)◦dz t) on Td × (0,∞),
u = u0 on Td ×{0},

for m ∈ (0,∞).

Obstacles

Irregularity: shocks, free interfaces
Non-uniqueness of weak solutions

Assumptions:

Driving noise: For some n ≥ 1, α ∈ (0,1),

zt = (z1t , . . . ,z
n
t ) ∈ C0,α

(
[0,T ];Gb

1
α
c(Rn)

)
.

Regularity of the coe�cients: For γ > 1
α
,

∇xA(x ,v) ∈ C γ+2(Td ×R), ∂vA(x ,v) ∈ C γ+2(Td ×R).

No source:
∇x ·At(x ,0) = 0 ∈ Rn for each x ∈ Td .
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Nonlinear di�usions with nonlinear noise

Theorem

Let u10 ,u
2
0 ∈ L2+(Td ) and u1 and u2 be entropy solutions. Then∥∥u1−u2

∥∥
L∞
t ([0,∞);L1x (Td )) ≤

∥∥u10−u20
∥∥
L1x (Td )

.

In particular, entropy solutions are unique.

Theorem

Let u0 ∈ L2+(Td ). There exists a unique non-negative entropy solution with initial

data u0. Furthermore,

‖u‖L∞
t ([0,∞);L1x (Td )) ≤ ‖u0‖L1x (Td ) .

Extensions:

For m > 2 or m = 1, non-negativity of u0 can be avoided.

For m ≥ 3 or m = 1, u0 ∈ (L1∩L2)(Rd ) the Cauchy problem can be treated
by identical methods.

Integrability: Localization allows extension to L1-data.
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Nonlinear di�usions with nonlinear noise

Application to fractional Brownian motion:

fixed rough path
continuous

?

measurable

Theorem

Let t ∈ [0,∞) 7→ zt(ω) be the sample paths of a fractional Brownian motion with

Hurst parameter H ∈ ( 14 ,1) on a probability space ω ∈ (Ω,F ,P). Then u de�nes a

random dynamical system on L2+(Td ).
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Nonlinear di�usions with nonlinear noise

Theorem

Let u0 ∈ L2+(Td ) and T > 0. Let {zn}∞
n=1,z ∈ C 0,α

(
[0,T ];Gb

1

α c(Rn)
)
satisfying

lim
n→∞

dα (zn,z) = 0.

Let {un}∞
n=1 and u be the pathwise kinetic solutions to driving signals {zn}∞

n=1 and

z respectively. Then,

lim
n→∞
‖un−u‖L∞([0,T ];L1(Td )) = 0.
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Aspects of the proof

Interlude: Kinetic formulation:

Consider {
∂tu = ∆(|u|m−1u) on Td × (0,∞),
u = u0 on Td ×{0},

for m ∈ (0,∞).

Kinetic formulation: Let

χ(t,x ,v) := 1v<u(t,x)−1v<0.

Then
∂tχ =mδv=udiv(|u|m−1∇u)

=mdiv(δv=u(|u|m−1∇u))−m∇x (δv=u)(|u|m−1∇u)

=mdiv(δv=u(|v |m−1∇u))−m(∂uδv=u)|u|m−1|∇u|2

=m|v |m−1∆χ + ∂v

(
mδv=u|

2

m+1
∇|u|

m+1
2 |2

)
=m |v |m−1 ∆xχ + ∂vq

for some non-negative measure q.

Application: E.g. optimal regularity in Sobolev spaces [G., JEMS, 2019+].
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Aspects of the proof

Consider{
∂tu = ∆(|u|m−1u) + ∇ · (A(x ,u)◦dz t) on Td × (0,∞),
u = u0 on Td ×{0},

for m ∈ (0,∞).

Kinetic formulation: Let

χ(t,x ,v) := 1v<u(t,x)−1v<0.

Then

∂tχ =m |v |m−1 ∆xχ + ∇xχ(∂vA(x ,v)◦dz t)−∂v χ
(
∇x ·At(x ,v)◦dz t

)
+ ∂vq

for some non-negative measure q.

Random test-functions (duality method) inspired by stochastic viscosity
solutions.
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Aspects of the proof

Recall: Kinetic formulation

∂tχ =m |v |m−1 ∆xχ + ∇xχ(∂vA(x ,v)◦dz t)−∂v χ
(
∇x ·At(x ,v)◦dz t

)
+ ∂vq

Consider, for each t0, t1 ∈ [0,∞) and ρ0 ∈ C∞
c (Td ×R),

∂tρt0,t = (∂vA(x ,v)◦dz t) ·∇xρt0,t − (∇x ·At(x ,v)◦dz t)∂vρt0,t

ρt0,t0 = ρ0.

Then ∫
R

∫
Td

χ(x ,v ,s)ρt0,s(x ,v)dxdv
∣∣∣∣t1
s=t0

=
∫ t1

t0

∫
R

∫
Td

(
m |v |m−1

)
χ(x ,v ,s)∆xρt0,s(x ,v)dxdv ds

−
∫ t1

t0

∫
R

∫
Td

q(x ,ξ ,s)∂vρt0,s(x ,v)dxdv ds.

(3)

This gives a stable form of the SPDE: Say that u is an entropy solution if χ

satis�es (3).
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Aspects of the proof

Recall

∂tρt0,t = (∂vA(x ,v)◦dz t) ·∇xρt0,t − (∇x ·At(x ,v)◦dz t)∂vρt0,t

ρt0,t0 = ρ0.

Characteristics:

dY x ,v
t0,t

= ∂vA(Y x ,v
t0,t

,Πx ,v
t0,t

)◦dz t0,t in (0, t0),
dΠx ,v

t0,t
=−∇x ·At(Y x ,v

t0,t
,Πx ,v

t0,t
)◦dz t0,t in (0, t0),

(Y x ,v
t0,0

,Πx ,v
t0,0

) = (x ,v).

Solve the system of characteristics by rough path methods.

Then
ρt0,t(x ,v) = ρ0

(
Y x ,v
t,t−t0 ,Π

x ,v
t,t−t0

)
.

Note: spatially homogeneous case (A(x ,v)≡ A(v)) much simpler:

Y x ,v
t0,t

= x + ∂vA(v)z t0,t in (0, t0),
Πx ,v
t0,t

= v in (0, t0).
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Aspects of the proof

Uniqueness of entropy solutions

Aim to estimate the L1-di�erence∫
Td

∣∣u1−u2
∣∣ dx =

∫
R

∫
Td

∣∣χ1−χ
2
∣∣2 dxdv =

∫
R

∫
Td

∣∣χ1
∣∣+ ∣∣χ2

∣∣−2χ
1
χ
2 dxdv

=
∫
R

∫
Td

χ
1sgn(v) + χ

2sgn(v)−2χ
1
χ
2 dxdv .

Need to mollify on the right hand side:∫
Td

∣∣u1−u2
∣∣ dx = lim

ε,δ→0

∫
R

∫
Td

χ
1,ε,δ sgnδ (v) + χ

2,ε,δ sgnδ (v)−2χ
1,ε,δ

χ
2,ε,δ .

Leads to commutator errors when applying the equation.

To control errors:

Exploit new cancellations
Use (new) regularity estimates on u.

Spatially homogeneous case:

∂tu = ∆(|u|m−1u) + ∇ · (A(u)◦dz t).

Translation invariance yields BV -regularity of solutions (if u0 ∈ BV ).
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Aspects of the proof

Essential new ingredient: Make use of full regularity∫ T

0

∫
Td
|∇u

m
2 |2dxdt < ∞

which corresponds to singular moment∫ T

0

∫
Td

∫
R
|v |−1dq(t,x ,v) < ∞.

Note: True only for non-negative solutions.

Existence of entropy solutions

New apriori estimates controlling

‖u‖
Lm+1
t W

2

m+1 ,m+1
x

.
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Happy Birthday, Terry!
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