Semi-discretization for stochastic scalar conservation laws with multiple rough fluxes

Benjamin Gess
Max Planck Institute for Mathematics in the Sciences, Leipzig

7th European Congress of Mathematics (7ECM)
TU Berlin, July 2016

joint work with: Panagiotis E. Souganidis, Benoit Perthame
[G., Souganidis; CMS, 2014], [G., Souganidis; CPAM, 2016],
[G., Perthame, Souganidis; SINUM, 2016].
Outline

1. Motivation
2. Deterministic case
3. Stochastic scalar conservation laws
Motivation
Motivation

- We will consider PDE driven by a 'rough' signal z of the type

$$
du + \text{div}(A(x, u) \circ dz) = 0.
$$

If A is a diagonal matrix this becomes

$$
du + \sum_{j=1}^{N} \partial_{x_j} A_j(x, u) \circ dz^j = 0
$$

- In particular, include $z = \beta$ Brownian motion.
- For example, stochastic Burgers’ equation

$$
du + \frac{1}{2} \partial_x u^2 \circ d\beta = 0.
$$
The motivation comes from two directions: Relation to Hamilton-Jacobi equations, mean-field games.

In the one-dimensional case: If v solves the Hamilton-Jacobi equation

$$dv + A(\partial_x v, x) \circ d\beta = 0$$

then $u = \partial_x v$ solves

$$du + \partial_x A(u, x) \circ d\beta = 0.$$

But: The mathematical methods available for Hamilton-Jacobi equations (viscosity solutions) and scalar conservation laws (entropy solutions, kinetic methods) are very different.
Motivation

- Mean-field games going back to Lasry, Lions: Consider the SDE

\[
dX_t^i = \sigma \left(X_t^i, \frac{1}{L-1} \sum_{j \neq i} \delta_{X_t^j} \right) \circ d\beta_t \quad \text{in } \mathbb{R}^N
\]

for \(i = 1, \ldots, L \).

- Then the empirical law of \(X \) converges to a measure \(\pi_t \) with density \(m_t \) which evolves according to

\[
dm + \text{div}(\sigma^*(x, m) \circ d\beta) = 0.
\]

- Note that in general \(\sigma^* \) is not a diagonal matrix. We need the full generality of

\[
du + \text{div}(A(x, u) \circ d\beta) = 0.
\]
Deterministic case

1. Motivation

2. Deterministic case

3. Stochastic scalar conservation laws
Deterministic case

Consider

$$\partial_t u + \text{div} A(u) = \partial_t u + A'(u) \cdot \nabla u = 0.$$

The corresponding characteristic system reads

$$\frac{du}{dt} = 0, \quad \frac{dx}{dt} = A'(u)$$

$$u(0) = w, \quad x(0) = x.$$

Let $F^t(x, w)$ be the corresponding solution with initial condition (x, w) at time $t = 0$.

As long as u is smooth ($u \in C^1$) we have

$$\text{graph}(u(t)) = F^t \text{graph}(u_0).$$

But: $F^t \text{graph}(u_0)$ gives a wrong (multivalued) solution once shocks appear.
Deterministic case

- From [Brenier, 1984]:
 - Need to ‘collapse’ multivalued solution into single-valued one.
 - Leads to Brenier’s transport-collapse scheme: For a timestep Δt evolve via the characteristics, then collapse the possible multivalued solution to a single-valued one. Iterate.
Deterministic case

- Most efficiently described via the kinetic form of scalar conservation laws [Lions, Perthame, Tadmor; *JAMS*, 1994]
- Again consider
 \[\partial_t u + \text{div} A(u) = 0. \]
- For simplicity say \(u_0 \geq 0 \), which implies \(u \geq 0 \).
- We consider the characteristic function
 \[\chi(t, x, \xi) := 1_{[0, u(t, x)]}(\xi). \]

Elementary calculation (if \(u \) were smooth, i.e. no shocks):

\[
\partial_t \chi(t, x, \xi) := \delta_{\xi = u(t, x)} \partial_t u(t, x) = -\delta_{\xi = u(t, x)} \text{div} A(u) \\
= -\delta_{\xi = u(t, x)} A'(u) \cdot \nabla u = -\delta_{\xi = u(t, x)} A'(\xi) \cdot \nabla u \\
= -A'(\xi) \cdot \nabla 1_{[0, u(t, x)]}(\xi) = -A'(\xi) \cdot \nabla \chi(t, x, \xi).
\]
Deterministic case

- This is true up to shocks. The shocks introduce an error, the 'entropy dissipation measure' m:

$$
\partial_t \chi(t, x, \xi) + A'(\xi) \cdot \nabla \chi(t, x, \xi) = \partial_\xi m. \tag{1}
$$

- In the deterministic setting: u is an entropy solution iff $\chi(t, x, \xi) := 1_{[0,u(t,x)]}(\xi)$ is a kinetic solution to (1).

- Advantage: (1) is a linear equation in χ, at the expense of introducing the additional velocity variable ξ.

- Consider $\partial_\xi m$ as a Lagrange multiplier.
1 Motivation

2 Deterministic case

3 Stochastic scalar conservation laws
Stochastic scalar conservation laws

- **Aim**: Semi-discretization scheme for

 \[du + \sum_{j=1}^{N} \partial_{x_j} A^i(x, u) \circ dz^j = 0. \]

- As before set

 \[\chi(t, x, \xi) := 1_{[0, u(t, x)]}(\xi) \]

 which yields the kinetic form

 \[d\chi + \sum_{j=1}^{N} \partial_{\xi} A^i(x, \xi) \partial_{x_j} \chi \circ dz^j + \sum_{j=1}^{N} \partial_{x_j} A^i(x, \xi) \partial_{\xi} \chi \circ dz^j = \partial_{\xi} m. \]
Stochastic scalar conservation laws

- Given time steps $0 = t_0 < t_1 < \cdots < t_K = T$.
- Iteratively:
 - First solve the linear "free-streaming" transport equation
 \[
 \partial_t f_{\Delta t} + \sum_{j=1}^N (\partial_\xi A^j)(x, \xi) \partial_{x_j} f_{\Delta t} \circ dz^j + \sum_{j=1}^N (\partial_{x_j} A^j)(x, \xi) \partial_\xi f_{\Delta t} \circ dz^j = 0
 \]
 on $[t_k, t_{k+1})$.
 - Then introduce a fast relaxation step, setting
 \[
 u_{\Delta t}(t, x) := \int f_{\Delta t}(t-, x, \eta) d\eta
 \]
 and
 \[
 f_{\Delta t}(t_{k+1}, x, \xi) := 1_{[0, u_{\Delta t}(t_{k+1}, x)]}(\xi).
 \]
- Take $u_{\Delta t}$ as an approximation of the pathwise entropy solution.
Deterministic case

- Literature: In the deterministic case, the convergence of this “transport collapse” scheme is known
 - [Brenier, SIAM, 1984]: Via compactness methods and BV-estimates.
 - [Vasseur, SIAM, 1999]: Via compactness methods and averaging Lemma.

- Known proofs do not allow to obtain a rate of convergence.
Consider the spatially homogeneous case

\[du + \sum_{j=1}^{N} \partial_{x_j} A^j(u) \circ dz^j = 0, \]

where \(z \) is a continuous function.

Theorem (G., Perthame, Souganidis; SINUM, 2016)

Let \(u_0 \in (BV \cap L^\infty)(\mathbb{R}^N) \). Then

\[\| u(t) - u_{\Delta t}(t) \|_{L^1} \leq C \sqrt{\Delta z}, \]

with a constant \(C \) given in terms of the data and

\[\Delta z := \max_{k=0,\ldots,K-1} \sup_{t \in [t_k, t_{k+1}]} |z_t - z_{t_k}|. \]
Idea of the proof

- Semi-discretization scheme has a kinetic form:

\[
\partial_t f_{\Delta t} + \sum_{j=1}^{N} (\partial_\xi A^j(x, \xi) \partial_{x_j} f_{\Delta t} \circ dz^j = \sum_k \delta(t - t_k)(\mathcal{M} f_{\Delta t} - f_{\Delta t}) =: \partial_\xi m_{\Delta t},
\]

where

\[
\mathcal{M} f_{\Delta t} := 1_{[0, u_{\Delta t}(t,x)]}(\xi) - \int_{f_{\Delta t}(t,x,\eta)d\eta}(\xi).
\]

- Use this to derive estimate for

\[
\int |\chi(t) - f_{\Delta t}(t)| d\xi dx.
\]

- Obstacle: While

\[
\partial_\xi 1_{[0, u(t,x)]}(\xi) = \delta(\xi) - \delta(u(t,x) - \xi) \leq \delta(\xi)
\]

we only have

\[
\partial_\xi f_{\Delta t} = \partial_\xi (f_{\Delta t}(t_k, x - A'(\xi)(z_t - z_{t_k}), \xi)) \leq \delta(\xi) + D_x f_{\Delta t}(x - A'(\xi)(z_t - z_{t_k}), \xi, t_k) \cdot A''(\xi)(z_t - z_{t_k})
\]

- Compensate blow-up of \(D_x f_{\Delta t}\) by convergence of \(|z_t - z_{t_k}| \leq \Delta z\) via BV estimates.
Consider the spatially inhomogeneous case

\[du + \sum_{j=1}^{N} \partial_{x_j} A^i(x, u) \circ dz^j = 0, \]

where \(z \) is an \(\alpha \)-Hölder rough path, \(A \) sufficiently smooth.

Theorem (G., Perthame, Souganidis; SINUM, 2016)

Let \(u_0 \in (L^1 \cap L^2)(\mathbb{R}^N) \). *Then, for* \(\Delta t \to 0 \),

\[u_{\Delta t} \to u \quad \text{in} \quad L^1([0, T] \times \mathbb{R}^N). \]
Idea of the proof

- Principle obstacle: No BV estimates, no averaging techniques.
- Still have a kinetic form

\[\partial_t f_{\Delta t} + \sum_{j=1}^{N} (\partial_\xi A^j)(x, \xi) \partial_{x_j} f_{\Delta t} \circ dz^j + \sum_{j=1}^{N} (\partial_{x_j} A^j)(x, \xi) \partial_\xi f_{\Delta t} \circ dz^j \]

\[= \sum_{k} \delta(t - t_k) (\mathcal{M} f_{\Delta t} - f_{\Delta t}) =: \partial_\xi m_{\Delta t}, \quad (\star) \]

where

\[\mathcal{M} f_{\Delta t} := 1_{[0,u_{\Delta t}(t,x)]}(\xi) = 1_{[0,\int f_{\Delta t}(t,x,\eta)d\eta]}(\xi). \]

- Derive stable L^1 and L^2 bounds for $f_{\Delta t}$. Then pass to weak limit in (\star). Leads to a generalized entropy solution.
- From [G., Souganidis, CMS, 2015] we know: generalized entropy solutions are entropy solutions.
- Deduce strong convergence by proving uniform tightness for $f_{\Delta t}$.
Thanks!