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Introduction

Synchronization by noise

We consider SDE on Rd of the type

dXt = b(Xt)dt + σ(Xt)dWt . (*)

The inclusion of noise may simplify the long-time dynamics, i.e. while

dXt = b(Xt)dt

may not be globally stable, the long-time behavior of (∗) may be trivial.

Roughly speaking: Synchronization by noise means that the random attractor
consists of a single random point, i.e.

A(ω) = {a(ω)}, P-a.s.

In particular: If synchronization occurs, then each two trajectories converge
to each other in probability:

|X x
t −X y

t | → 0 for t→ ∞

in probability.
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Introduction

Model example

Double-well potential, V (x) =− 1
2
|x |2 + 1

4
|x |4

with additive Wiener noise, i.e.

dXt = (Xt −|Xt |2Xt)dt + σdWt .
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Introduction

Model example

Deterministic case (σ = 0, d = 1):

dXt = (Xt −X 3
t )dt

Attractor is given by closed unit ball: A = B̄1(0) = [−1,1].

Point attractor is given by Sd−1∪{0}= {±1,0}.
Simulation:
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Introduction

Model example

Additive noise (σ > 0):

dXt = (Xt −X 3
t )dt + σdWt

Synchronization occurs: A(ω) = {a(ω)} a.s.. In particular |X x
t −X y

t | → 0 for
t→ ∞ in probability.

Simulation:
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Introduction

Model example

Starting point of presented work: How to prove this for d > 1?

Trajectories Distance of trajectories
σ = 1

σ = 10
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Background on random dynamical systems

Stochastic �ows

Consider
dXt = b(Xt)dt + σ(Xt)dWt . (*)

By Arnold, Scheutzow, Kunita (among others) one may select a version ϕt of
the solution Xt giving a random dynamical system

De�nition

Let θ := (θt)t∈R be a metric dynamical system on (Ω,F ,P), i.e. θ is a group of
measurable and P-preserving maps on Ω.
The map ϕ : [0,∞)×Ω×Rd → Rd is a random dynamical system (RDS) if

1 ϕ is measurable,

2 x 7→ ϕt(ω)x is continuous for all t ≥ 0, ω ∈ Ω,

3 ϕt+s(ω)x = ϕt(θsω)ϕs(ω)x , ϕ0(ω)x = x .

Canonical setup: Ω = C (R;Rd), P double-sided Wiener measure, θtω(s) := ω(t +
s)−ω(t), ϕt(ω)x good version of a solution to (*) with i.c. x .
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Background on random dynamical systems

White noise RDS

For s ≤ t we de�ne

Fs,t := σ(ϕs ′,t′ ,s ≤ s ′ ≤ t ′ ≤ t).

In particular, let F0 := F−∞,0 be the past of the system up to time 0.

De�nition

An RDS ϕ is a white noise RDS, if Fs,t , Fs ′,t′ are independent for all disjoint
(s, t), (s ′, t ′).

Let ϕ be a white noise RDS, then

Pt f (x) := Ef (ϕt(·)x)

de�nes a Markov semigroup on Cb(Rd ;R).
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Background on random dynamical systems

Random attractors

De�nition

A weak random attractor is a random set A(ω) such that

1 (invariance): ϕt(ω)A(ω) = A(θtω), a.s. for all t ≥ 0.

2 (attraction):
d(ϕt(ω)B,A(θtω))→ 0 for t→ ∞

in probability, for each compact set B.

3 (compactness): A(ω) is compact a.s..

If we replace compact sets B by points, then A is called a weak point attractor.

Fact

Weak random attractors are F0-measurable.
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Background on random dynamical systems

De�nition

We say that synchronization occurs if the weak random attractor is a singleton

A(ω) = {a(ω)} a.s..

We say that weak synchronization occurs if there is a singleton weak point
attractor.
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Brief overview of known methods

Known methods

There are several distinct methods to prove synchronization by noise available in
the literature (there are many more!):

1 Monotone RDS + uniqueness of invariant measure (e.g. Arnold, Chueshov
'98; Chuechov, Scheutzow '04)

2 Local stability + transitivity of the two-point motion (e.g. Baxendale '91)

3 Perturbation techniques/large deviation methods (e.g. Tearne '08, Martinelli,
Scoppola, '88, '94)

4 Master-slave synchronization (Chueshov, Schmalfuss '10)

5 ... (many more) ...
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Brief overview of known methods Monotone RDS

Monotone RDS

Monotone RDS: Assume that there is a partial order ≤ of the state space
(say Rd) that is preserved by ϕ, i.e.

if x ≤ y then ϕt(ω)x ≤ ϕt(ω)y .

Assume that there is a random attractor A suitable �compatibility� of ≤ with
the topoloy on Rd . By Arnold, Chueshov '98 there are random variables
a−,a+ ∈ A such that

A(ω)⊆ [a−(ω),a+(ω)].

Invariance of A implies that a−,a+ are invariant under ϕ.

Uniqueness of the invariant measure gives: L (a−) = L (a+) which implies
a− = a+ a.s..

Model example: For d = 1 this proves synchronization for

dXt = (Xt −X 3
t )dt + σdWt

with σ > 0.
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Brief overview of known methods Local stability + transitivity of the two-point motion

Local stability + transitivity of the two-point motion

Assumptions: Local stability + transitivity of the two point motion
Under suitable ergodic conditions, there is one number λtop , called �rst (or
top) Lyapunov exponent, such that

λtop = lim
t→∞

1

t
log |Dϕt(x ,ω)v |

exists for certain x ,v ,ω and it is the largest such limit.
Local stability: λtop < 0. This yields local stability, e.g. by local stable
manifold theorem (e.g. Mohammed, Scheutzow '99)
How to pass to global stability?
Baxendale 91': Assume transitivity of the two point motion
t 7→ (ϕt(ω)x ,ϕt(ω)y). In particular, i.e. for each δ > 0 the stopping time

τ := inf{t ≥ 0||ϕt(ω)x−ϕt(ω)y | ≤ δ}
is �nite with positive probability.
For additive noise this is not a good assumption

dϕt(x) = b(ϕt(x))dt +dWt

dϕt(y) = b(ϕt(y))dt +dWt .

The noise only shifts parallel to the diagonal.
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Brief overview of known methods Perturbation techniques

Perturbation techniques

Tearne '08 for small noise based on dynamical considerations.

Consider:
dXt = b(Xt)dt + εdWt

Among other assumptions assume:

there are �nitely many �xed points of b

all stable �xed points are hyperbolic

the noise is small enough.
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Brief overview of known methods Perturbation techniques

Perturbation techniques

The idea is:

each trajectory spends a long time in a basin of attraction, then jumps to

another;

the trajectories of two di�erent initial conditions may be in two di�erent basins

but sooner or later there is a �uctuation that sends both in the same basin

and there they approach each other at least for small σ ,

the time spent in such basins is so long that next fast transitions between

basins cannot split again the particles.

Only covers double well in 1−d :

The examples treated by Tearne '08 are also covered by the general theory
below.
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Brief overview of known methods Perturbation techniques

Model example

Question

Open question in the literature: Does synchronization occur for

dXt = (Xt −|Xt |2Xt)dt + σdWt

with σ > 0 and d > 1?
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A new approach to synchronization

Local stability

In the following let ϕ be a white noise RDS, (E ,d) be a Polish space.

De�nition

Let U ⊂ E be a (deterministic) non-empty open set. We say that ϕ is
asymptotically stable on U if there exists a (deterministic) sequence tn ↑ ∞ such
that

P
(
lim
n→∞

diam(ϕtn(.,U)) = 0
)
> 0.

We will see later that a negative top Lyapunov exponent implies asymptotic
stability.

Lemma

Let ϕ be asymptotically stable on U and assume

P(A⊂ U) > 0.

Then A is a singleton P-a.s., i.e. synchronization holds.

B. Gess (University of Chicago) Synchronization by noise 22 / 33



A new approach to synchronization

Full support for the attractor

De�nition

We say that ϕ is swift transitive if, for every closed ball B (x , r) and every point y ,
there is a time t > 0 such that

P(ϕt (·,B (x , r))⊂ B (y ,2r)) > 0.

Lemma

If ϕ is swift transitive and

ess inf {diam(A(ω));ω ∈ Ω}= 0 (*)

then
P(A⊂ U) > 0

for every non-empty (deterministic) open set U ⊂ E.

Condition (∗) means that P(diam(A) < ε) > 0 for every ε > 0.
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A new approach to synchronization

Full support for the attractor

Theorem

Assume that ϕ is asymptotically stable on some non-empty open set U ⊂ X and is
swift transitive. Let A satisfy

ess inf {diam(A(ω));ω ∈ Ω}= 0 (*)

Then A is a singleton, i.e. synchronization occurs.
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A new approach to synchronization

Small diameter

De�nition

We say that ϕ is contracting on large sets if for every R > 0, there is a ball
B (y ,R) and a time t > 0 such that

P
(

diam(ϕt (·,B (y ,R)))≤ R

4

)
> 0.

Lemma

Assume that ϕ is contracting on large sets and swift transitive. Then A has small
diameter.
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A new approach to synchronization

Examples

How restrictive are the assumptions of asymptotic stability, swift transitivity
and contraction on large sets?

asymptotic stability:

Follows from local stable manifold theorem if λtop < 0

For additive noise

dXt = b(Xt)dt+dWt

we have the bound

λtop ≤
∫
Rd

λ
+(x)dµ(x),

with λ+(x) :=max|v |=1(Db(x)v ,v).
For gradient systems and small noise one often has λtop < 0.

swift transitivity: Satis�ed basically for all SDE with additive noise.

contraction on large sets: Assume b to be eventually monotone, i.e. there
exists an R > 0 such that

〈b(x)−b(y),x−y〉 ≤ −c|x−y |2

for all |x |, |y | ≥ R. Then contraction of large balls holds.
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Gradient systems

Gradient systems

What can we say without assuming eventual monotonicity?

Let ϕ be a white noise RDS and assume that Pt is ergodic with invariant
measure µ.

A random probability measure ω 7→ µω is a measurable function from Ω to
the space of probability measures. We say that µω is ϕ-invariant if

ϕt(ω)∗µω = µθtω a.s..

Fact

If µω is an F0-measurable random invariant measure, then µ = Eµω is
Pt-invariant. Conversely, if µ is Pt-invariant then

µω = lim
t→∞

ϕt(θ−tω)∗µ

exists for P-a.e. ω, it is an F0-measurable random invariant measure.
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Gradient systems

Gradient systems

Fact

Every random probability measure is supported by the weak random attractor, i.e.

µω (A(ω)) = 1 a.s..

If ϕ is strongly mixing and A(ω) := supp(µω ) is compact then A(ω) is a
(minimal) weak point attractor.

Lemma

The statistical equilibrium µω is either discrete or di�use. More precisely, either
µω consists of �nitely many atoms of the same mass P-a.s., i.e. there is an N ∈ N
and F0-measurable random variables a1, . . . ,aN such that

µω = { 1
N

δai (ω) : i = 1, . . . ,N}

or µω does not have point masses P-a.s..
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Gradient systems

Gradient systems

Local stability can now be nicely captured in terms of the structure of the statistical
equilibrium, i.e.

Lemma

Assume that ϕ is asymptotically stable on U with µ(U) > 0. Then µω is discrete.

Proposition

If ϕ is strongly mixing and asymptotically stable on U with µ(U) > 0, then there
is an N ∈ N and F0-measurable random variables a1, . . . ,aN such that

A(ω) = supp(µω ) = {ai (ω) : i = 1, . . . ,N}

is a minimal weak point attractor.
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Gradient systems

Gradient systems

It remains to show (under further assumptions) that trajectories get close.
This replaces the assumption of eventual monotonicity/contraction of large
balls.

Let us consider gradient systems, i.e.

dXt =−∇V (Xt)dt + σdWt

and assume strong mixing, i.e. ρ(x) := e
− 2

σ2
V (x) ∈ L1(Rd).

To prove that trajectories get close, we need some kind of monotonicity of
b =−∇V . From ρ(x) ∈ L1(Rd) we get: For all s ∈ Sd−1, δ > 0 there is a
z ∈ Rd such that

〈b(z)−b(z−δ s),s〉< 0.

B. Gess (University of Chicago) Synchronization by noise 31 / 33



Gradient systems

Gradient systems

Theorem

Assume that ρ(x) := e
− 2

σ2
V (x) ∈ L1(Rd) and that ϕ is asymptotically stable on U

with µ(U) > 0. Then, there is a minimal weak point attractor A consisting of a
single random point a(ω) and

A(ω) = supp(µω ) = {a(ω)} P-a.s.,

i.e. weak synchronization holds.

Question

Open questions:

For gradient systems: Does asymptotic stability always hold?

What about the Lorenz system?
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Gradient systems

Thanks

Thanks!
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