Synchronization by noise J

Benjamin Gess

Department of Mathematics
University of Chicago

RTG 1845 Stochastic Analysis with Applications in Biology, Finance and Physics
Workshop on

Stochastics and Dynamics
Berlin, September 2014

joint work with: Franco Flandoli, Michael Scheutzow

B. Gess (University of Chicago) Synchronization by noise 1/ 33



N
Outline

@ Introduction
@ Background on random dynamical systems

© Brief overview of known methods
@ Monotone RDS
@ Local stability + transitivity of the two-point motion
@ Perturbation techniques

© A new approach to synchronization

© Gradient systems

B. Gess (University of Chicago) Synchronization by noise 2 /33



Introduction

Introduction

Introduction

B. Gess (University of Chicago) Synchronization by noise 3 /33



Introduction

Synchronization by noise

o We consider SDE on RY of the type
dX; = b(X;)dt + o(X;)dW;. *)
@ The inclusion of noise may simplify the long-time dynamics, i.e. while
dX; = b(X;)dt

may not be globally stable, the long-time behavior of (x) may be trivial.

@ Roughly speaking: Synchronization by noise means that the random attractor
consists of a single random point, i.e.

A() = {a(®)}, Pas.

@ In particular: If synchronization occurs, then each two trajectories converge
to each other in probability:

X} —X{| =0 fort—o

in probability.
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Introduction

Model example

o Double-well potential, V(x) = —3|x|>+ [x|*

with additive Wiener noise, i.e.

dXt == (Xt - |Xt|2Xt)dt+ Gth.
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Introduction

Model example

@ Deterministic case (6 =0, d =1):

Simulation:

Attractor is given by closed unit ball: A= B;(0) =[-1,1].
Point attractor is given by St U{0} = {41,0}.

% o4
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Introduction

Model example

e Additive noise (o > 0):
dX; = (X; — X2)dt + odW,;

@ Synchronization occurs: A(w) = {a(®w)} a.s.. In particular | X — X} | — 0 for
t — oo in probability.

@ Simulation:

Xt
0
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Introduction

Model example

@ Starting point of presented work: How to prove this for d > 17
Trajectories Distance of trajectories

oc=1

T T R o
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Background on random dynamical systems

Stochastic flows

o Consider

@ By Arnold, Scheutzow, Kunita (among others) one may select a version ¢, of
the solution X; giving a random dynamical system

Definition
Let 6 :=(6;):cr be a metric dynamical system on (Q, % ,P), i.e. 0 is a group of

measurable and P-preserving maps on €.
The map @ : [0,0) x Q@ x RY — RY is a random dynamical system (RDS) if

@ ¢ is measurable,

@ x+— @:(w)x is continuous for all t >0, w € Q,
Q Pris(0)x = @ (6:0)ps()x,  Po(@)x = x.

v

Canonical setup: Q = C(R;R?), P double-sided Wiener measure, 6;0(s) := o(t +
s)— o(t), @:(w)x good version of a solution to (*) with i.c. x.
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Background on random dynamical systems

White noise RDS

@ For s <t we define
Fsp=0(Qg .5 <5 <t <t).
In particular, let %, := % _w g be the past of the system up to time 0.

Definition

An RDS ¢ is a white noise RDS, if % ;, #¢ v are independent for all disjoint
(s,t), (s',t).

@ Let ¢ be a white noise RDS, then

Pef(x) := Ef (@e(-)x)

defines a Markov semigroup on Cp(R%;R).

B. Gess (University of Chicago) Synchronization by noise 11 / 33



Background on random dynamical systems

Random attractors

Definition
A weak random attractor is a random set A(®) such that
@ (invariance): ¢;(w)A(w) = A(6;®), a.s. for all t > 0.
Q (attraction):
d(o(@0)B,A(6;w)) =0 fort— oo
in probability, for each compact set B.
@ (compactness): A(®) is compact a.s..

If we replace compact sets B by points, then A is called a weak point attractor.

4

Fact

Weak random attractors are .Fy-measurable.
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Background on random dynamical systems

Definition
We say that synchronization occurs if the weak random attractor is a singleton

A(w)={a(w)} as..

We say that weak synchronization occurs if there is a singleton weak point
attractor. |
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Brief overview of known methods

Known methods

There are several distinct methods to prove synchronization by noise available in
the literature (there are many more!):

© Monotone RDS + uniqueness of invariant measure (e.g. Arnold, Chueshov
'98; Chuechov, Scheutzow '04)

@ Local stability + transitivity of the two-point motion (e.g. Baxendale '91)

© Perturbation techniques/large deviation methods (e.g. Tearne 08, Martinelli,
Scoppola, '88, '94)

@ Master-slave synchronization (Chueshov, Schmalfuss '10)

@ ... (many more) ...
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Monotone RDS

@ Monotone RDS: Assume that there is a partial order < of the state space
(say R?) that is preserved by ¢, i.e.

if x <y then @;(w)x < @:(w)y.

@ Assume that there is a random attractor A suitable “compatibility” of < with
the topoloy on R?. By Arnold, Chueshov '98 there are random variables
a_,a; € A such that

A©) C [2-(),2: (o))
@ Invariance of A implies that a_,a, are invariant under ¢.

@ Uniqueness of the invariant measure gives: .#(a_) = £ (a+) which implies
a_=a; as..

@ Model example: For d =1 this proves synchronization for
dX; = (X; — X2)dt + o dW,;

with o > 0.
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Local stability + transitivity of the two-point motion

@ Assumptions: Local stability + transitivity of the two point motion
@ Under suitable ergodic conditions, there is one number Ao, , called first (or
top) Lyapunov exponent, such that

o1
Atop = tlir:o? log |Do(x, ®)v]|

exists for certain x,v,® and it is the largest such limit.
@ Local stability: A, < 0. This yields local stability, e.g. by local stable
manifold theorem (e.g. Mohammed, Scheutzow '99)
@ How to pass to global stability?
o Baxendale 91": Assume transitivity of the two point motion
t— (¢r(0)x, ¢ (@)y). In particular, i.e. for each 6 > 0 the stopping time
T:=inf{t > 0[|@:(@)x — @r(@)y| < 6}
is finite with positive probability.
@ For additive noise this is not a good assumption
de(x) = b(@(x))dt + dW;
doe(y) = b(9:(y))dt + dW;.
The noise only shifts parallel to the diagonal.
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Perturbation techniques

@ Tearne '08 for small noise based on dynamical considerations.
o Consider:
@ Among other assumptions assume:

o there are finitely many fixed points of b
o all stable fixed points are hyperbolic
o the noise is small enough.
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Perturbation techniques

@ The idea is:

e each trajectory spends a long time in a basin of attraction, then jumps to
another;

o the trajectories of two different initial conditions may be in two different basins
but sooner or later there is a fluctuation that sends both in the same basin
and there they approach each other at least for small o,

o the time spent in such basins is so long that next fast transitions between
basins cannot split again the particles.

@ Only covers double well in 1 —d:

@ The examples treated by Tearne '08 are also covered by the general theory
below.
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Model example

Question

Open question in the literature: Does synchronization occur for
dXt == (Xt - ‘Xt|2Xt)dt+ O-th

with o >0and d >1?

B. Gess (University of Chicago) Synchronization by noise 20 / 33



A new approach to synchronization

A new approach to synchronization

A new approach to synchronization

B. Gess (University of Chicago) Synchronization by noise 21 /33



Local stability

In the following let @ be a white noise RDS, (E,d) be a Polish space.
Definition

Let U C E be a (deterministic) non-empty open set. We say that ¢ is
asymptotically stable on U if there exists a (deterministic) sequence t, 1 oo such
that

P( lim diam(¢;,(.,U)) =0) > 0.

n—oo

@ We will see later that a negative top Lyapunov exponent implies asymptotic
stability.

Lemma

Let @ be asymptotically stable on U and assume
P(Ac U)>0.

Then A is a singleton P-a.s., i.e. synchronization holds.
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A new approach to synchronization

Full support for the attractor

Definition

We say that ¢ is swift transitive if, for every closed ball B(x,r) and every point y,

there is a time t > 0 such that

B(9: (- B(x.r)) C B(y.2r)) > 0.

Lemma

If @ is swift transitive and

essinf {diam(A(w));w € Q} =0

then

P(ACU)>0

for every non-empty (deterministic) open set U C E.

Condition (*) means that P(diam(A) < €) > 0 for every € > 0.
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Full support for the attractor

Theorem

Assume that ¢ is asymptotically stable on some non-empty open set U C X and is
swift transitive. Let A satisfy

essinf {diam(A(®));® € Q} =0 (*

Then A is a singleton, i.e. synchronization occurs.
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A new approach to synchronization

Small diameter

Definition

We say that @ is contracting on large sets if for every R > 0, there is a ball
B(y,R) and a time t > 0 such that

P (diam (oc (B R)) < § ) >0

Lemma

Assume that @ is contracting on large sets and swift transitive. Then A has small
diameter.

v
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A new approach to synchronization

Examples

@ How restrictive are the assumptions of asymptotic stability, swift transitivity
and contraction on large sets?
@ asymptotic stability:
o Follows from local stable manifold theorem if A;0p <0

o For additive noise
dXt = b(Xt)dt+ th

we have the bound
Mo < [, 2+ ()dn ()
with AT (x) := max|, |1 (Db(x)v,v).
o For gradient systems and small noise one often has A:pp < 0.
o swift transitivity: Satisfied basically for all SDE with additive noise.
@ contraction on large sets: Assume b to be eventually monotone, i.e. there
exists an R > 0 such that

(b(x) = b(y),x—y) < —clx—y|?
for all |x|,|y| > R. Then contraction of large balls holds.
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Gradient systems

@ What can we say without assuming eventual monotonicity?

@ Let ¢ be a white noise RDS and assume that P; is ergodic with invariant
measure L.

@ A random probability measure @ — L is a measurable function from Q to
the space of probability measures. We say that p, is @-invariant if

0r(®)sllo = Hopo  a-S..

Fact

If Uy is an Fp-measurable random invariant measure, then p = Eu,, is
Py-invariant. Conversely, if i is Py-invariant then

Ho = t"_)’[]o ACET) N

exists for P-a.e. , it is an Fy-measurable random invariant measure.
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Gradient systems
Fact

Every random probability measure is supported by the weak random attractor, i.e.

Uo(A(w))=1 as.

If @ is strongly mixing and A(®) := supp(le) is compact then A(®) is a
(minimal) weak point attractor.

Lemma

The statistical equilibrium L, is either discrete or diffuse. More precisely, either
U consists of finitely many atoms of the same mass P-a.s., i.e. there is an N € N
and %y-measurable random variables ay,...,ay such that

1 .
[,Lw:{ﬁaqi(w)ZI:l,...,N}

or g does not have point masses P-a.s..
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Gradient systems

Local stability can now be nicely captured in terms of the structure of the statistical
equilibrium, i.e.

Lemma

Assume that @ is asymptotically stable on U with u(U) > 0. Then i, is discrete.

Proposition

If @ is strongly mixing and asymptotically stable on U with u(U) > 0, then there
is an N € N and .%y-measurable random variables ai,...,ay such that

A() = supp(tie) = {ai(®) : i =1,...,N}

is a minimal weak point attractor.
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Gradient systems

@ It remains to show (under further assumptions) that trajectories get close.
This replaces the assumption of eventual monotonicity/contraction of large
balls.

o Let us consider gradient systems, i.e.

2
and assume strong mixing, i.e. p(x):=e o) e [1(RY).
@ To prove that trajectories get close, we need some kind of monotonicity of
b= —VV. From p(x) € L}(R?) we get: For all s € S9°1, § >0 there is a
z € R? such that
(b(z) — b(z— 8s),s) < 0.
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Gradient systems

Theorem
2
Assume that p(x) := e o2V ¢ LY(RY) and that ¢ is asymptotically stable on U

with u(U) > 0. Then, there is a minimal weak point attractor A consisting of a
single random point a(®) and

A(@) = supp(io) = {a(@)} P-as.,

i.e. weak synchronization holds.

Question

Open questions:
e For gradient systems: Does asymptotic stability always hold?
o What about the Lorenz system?
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Thanks

Thanks!
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