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Introduction

Classical well-posedness for ODE:

dX x
t = b(X x

t )dt, X x
0

= x

is well-posed if b is su�ciently smooth, e.g. Lipschitz continuous.

In contrast, well-posedness for SDE: (σ > 0)

dX x
t = b(X x

t )dt + σdβt , X x
0

= x

has a unique solution if b is bounded, measurable. This is called
'well-posedness by noise'.

A simple example: b(x) = 2sgn(x)
√
|x |:
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Introduction

Introduction

Key hope in SPDE: Establish similar e�ects for PDE, in particular in �uid
dynamics, e.g. 3d-Navier-Stokes equations, gas dynamics.

Problem: A-priori unclear which form of noise to consider

Additive noise, e.g.

du = ∆udt + f (u)dt +dWt [Gyöngy, Pardoux; 1993]

du+ (u ·∇)udt + ∇pdt = ∆udt +dWt [Flandoli, Romito; 2007].

More recent: Linear multiplicative noise

du+b(x) ·∇udt = ∇u ◦dβt . [Flandoli, Gubinelli, Priola; 2010].
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Introduction

We recall: Consider
∂tu+b(x) ·∇u = 0, (TE)

for non-Lipschitz b (but, say, Hölder continuous). E.g. b(x) = 2sgn(x)
√
|x |.

Characteristics for (TE):

dX x
t = b(X x

t )dt ∈ Rd .

In general, characteristics collide causing shocks (i.e. discontinuities). Solution
is not better than u(t) ∈ BV even if u0 is smooth.

Characteristics branch causing non-uniqueness of weak solutions.
characteristics weak solutions, u0 = 1[0,∞)

Question: Can noise restore uniqueness or increase regularity?
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Introduction

Consider, σ > 0,
du+b(x) ·∇u = σ∇u ◦dβt . (STE)

Characteristics for (STE):

dX x
t = b(X x

t )dt−σdβt ∈ Rd .

Two (related) e�ects: regularization by noise, well-posedness by noise.

Well-posedness by noise [Flandoli, Gubinelli, Priola; 2010]: Weak solutions to
(STE) are unique.

Regularization by noise [Flandoli, Fedrizzi; 2013]: If u0 ∈
⋂

p≥1W
1,p then

u(t) ∈
⋂

p≥1W
1,p, P-a.s..
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Introduction

Left open: What about the nonlinear case, e.g. Burgers?

Linear multiplicative noise does not help anymore:

du+ ∂xu
2 dt = ∂xu ◦dβt .

Then: v(t,x) := u(t,x−βt) is a solution to

∂tv + ∂xv
2 = 0.

In particular, weak solutions are non-unique.

Conclusion in [Flandoli, Gubinelli, Priola; Invent. Math., 2010]:
�It is very easy to produce examples [...] for a stochastic version of Euler equa-
tion which show that the particular noise we use does not have any regularizing
e�ect in this case. [...] The generalization to nonlinear transport equations,
where b depends on u itself, would be a major next step for applications to
�uid dynamics but it turns out to be a di�cult problem.�

Di�erent forms of noise?
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Regularization by noise for nonlinear SPDE

Regularization by noise for nonlinear SPDE

Regularization by noise in nonlinear SPDE
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Regularization by noise for nonlinear SPDE

Regularity of solutions for stochastic SCL

Consider mean �eld equations

dX i
t = σ

L

(
X i
t ,
1

L

L

∑
j=1

δ
X j
t

)
◦dβt in RN

Taking L→ ∞ and σL→ σ leads to stochastic scalar conservation laws

du+div(σ(x ,u)u︸ ︷︷ ︸
=:A(x ,u)

◦dβ ) = 0 on (0,T )×Rd .

Methods apply to general spatially homogeneous and truly nonlinear �ux A.

For simplicity, in this talk restrict to

du+
1

2
∂xu

2 ◦dβt = 0.
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Regularization by noise for nonlinear SPDE

Consider

∂tu+
1

2
∂xu

2 = 0, on (0,T )×Rd

u(0) = u0 ∈ L∞(Rd ).

For
χ(t,x ,v) = χ(u(t,x),v) = 1v<u(t,x)−1v<0

we get the kinetic form

∂tχ + v∂xχ = ∂vm on (0,T )×Rd ×R.

Dissipation-dispersion approximations lead to

De�nition (De Lellis, Otto, Westdickenberg, 2003)

A function u ∈ L∞([0,T ]×Rd ) is said to be a quasi-solution if
χ(t,x ,v) = χ(u(t,x),v) satis�es

∂tχ + v∂xχ = ∂vm on (0,T )×Rd ×R

for some �nite (signed) measure m.
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Regularization by noise for nonlinear SPDE

Theorem (De Lellis, Westdickenberg, 2003; Jabin, Perthame 2002)

Consider

∂tu+
1

2
∂xu

2 = 0, on (0,T )×R.

Then

1 Each quasi-solution satis�es, for all λ ∈ (0, 1
3

),

u ∈ L1([0,T ];W λ ,1(R)).

2 For each λ > 1

3
there exists a quasi-solution u, such that

u 6∈ L1([0,T ];W λ ,1(R)).
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Regularization by noise for nonlinear SPDE

Theorem (G., Souganidis; CPAM, 2016)

Let u ∈ L∞ be a quasi-solution to

du+
1

2
∂xu

2 ◦dβt = 0 on T.

Then,

u ∈ L1([0,T ];W λ ,1(R)) for all λ ∈ (0,
1

2
), P-a.s..

If u is an entropy solution, then

u(t) ∈W λ ,1(R) for all t > 0, λ ∈ (0,
1

2
), P-a.s.. (?)

Two resulting questions:

1 Can the zero set in (?) be chosen uniformly in t?

2 Characterize the properties of Brownian paths leading to (?).
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Regularization by noise for nonlinear SPDE

Regularization by nonlinear noise

Consider, for w ∈ C ([0,T ]),

du+
1

2
∂xu

2 ◦dwt = 0, on R.

Get
‖u(t)‖

W 1,∞
x
≤
(
max
0≤s≤t

(w(s)−w(t))∧ (w(t)− min
0≤s≤t

w(s))
)−1

.

Decisive path property: �Changing sign of the derivative�.

For w = β we get
v(t) ∈W 1,∞(R), P−a.s.

But: Zero set depends on time t > 0.
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Path-by-path regularization by noise

Path-by-path regularization by noise

Path-by-path regularization by noise
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Path-by-path regularization by noise

Framework

Model example:

∂tu+
1

2
∂xu

2 ◦dwt = 0 on T,

with w ∈ C ([0,T ];R).

Again: Results are given for general truly nonlinear �ux A.

How to classify pathwise properties of w leading to improved regularity?

[G., Souganidis]

[Chouk, G.]
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Path-by-path regularization by noise

Idea of the proof

Ideas of the proof of regularity for

∂tu+
1

2
∂xu

2 ◦dβt = 0 on T.

Kinetic formulation:
dχ + v∂xχ ◦dβt = ∂vm,

for some �nite Radon measure m.

Change of variables gives

χ(t,x ,v) = χ0(x + vβt ,v) +
∫ t

0

∂vm(s,x + v(βt −βs),v)ds.
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Path-by-path regularization by noise

Idea of the proof

Averaging over velocity

u(t,x) =
∫
v

χ =
∫
v

χ0(x + vβt ,v)dv +
∫ t

0

∫
v

∂vm(s,x + v(βt −βs),v)dvds.

The averaging e�ect appears since the velocity average in v contains
averaging of the x-variable.

Rigorously, this can be seen by Fourier transform, that is,

û(t,n) =
∫
v
e−ivβtn χ̂0(n,v)dv +

∫ t

0

∫
v
e−iv(βt−βs )n∂v m̂(s,n,v)dvds.

The oscillatory integrals have a regularizing e�ect, both in v and in βt −βs .
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Path-by-path regularization by noise

Framework

For SDE this has been considered by [Catellier, Gubinelli; SPA, 2016]: A path
w ∈ C (R+;Rd ) is said to be (ρ,γ)-irregular if

|
∫ t

s
e in·wr dr |. (1+ |n|)−ρ |t− s|γ ∀n ∈ Rd , s < t.

Note: ∫ t

s
e in·wr dr =

∫
R
e in·xdLs,tw (x) = ˆLs,tw (n)

the Fourier transform of the local time.
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Path-by-path regularization by noise

Main result

Theorem

Let w ∈ Cη ([0,T ],Rd ) for some η > 0 be (ρ,γ)-irregular, u a bounded
quasi-solution solution to

∂tu+
1

2
∂xu

2 ◦dwt = 0 on T.

Then, for all

λ <
ρ(η +1)− (1− γ)

(ρ ∨1)(η +1) + (1− γ)
,

we have
‖u‖L1([0,T ];W λ ,1(R)) < ∞.
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Path-by-path regularization by noise

Corollary

Let βH be a fractional Brownian motion with Hurst parameter H ∈ (0, 1
2

] and u be
a bounded quasi-solution to

∂tu+
1

2
∂xu

2 ◦dβ
H
t = 0 on T. (1)

Then, for all λ < 1

1+2H ,
‖u‖L1([0,T ];W λ ,1(R)) < ∞.

Note: Fully recover the probabilistic result from [G., Souganidis; CPAM,
2016]: For H = 1

2
get λ < 1

2
.
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A path-by-path scaling condition

A path-by-path scaling condition

A path-by-path scaling condition
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A path-by-path scaling condition

Discussion of the path classi�cation

The proof given in [G., Souganidis; CPAM, 2016] uses the scaling property of
Brownian motion and independence of increments.

However: (ρ,γ)-irregularity depends on two parameters, also encoding a time
regularity. Hence, does not seem to be optimal.

Moreover: (ρ,γ)-irregularity not easy to check.

To avoid the use of oscillatory integrals: Completely avoid Fourier methods in
the proof.
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A path-by-path scaling condition

Idea of the proof

Consider

∂tu+
1

2
∂xu

2 ◦dwt = 0.

Kinetic form

∂tχ(t,x ,v) + v∂xχ(t,x ,v)◦dwt = ∂vm(t,x ,v).

Rewrite as, for λ > 0,

∂tχ(t,x ,v) + v∂xχ(t,x ,v)◦dwt + λ χ(t,x ,v) = ∂vm(t,x ,v) + λ χ(t,x ,v).
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A path-by-path scaling condition

Idea of the proof

Change of variables

χ(t,x ,v) =e−λ t
χ(0,x−vw0,t ,v) +

∫ t

0

e−λ (t−s)(∂vm)(s,x−vws,t ,v)ds

+ λ

∫ t

0

e−λ (t−s)
χ(s,x−vws,t ,v)ds.

Introduce the random X-ray transform

(Tg)(t,x) :=
∫ t

0

∫
v
g(s,x−vws,t ,v)e−λ (t−s) dvds

Hence,

u :=
∫
v

χ = T (∂vm) + λTχ.

where m is a �nite measure and χ(t,x ,v) := 1[0,u(t,x)](v).

Strategy: Estimate the regularity of T (∂vm), Tχ then use real interpolation.
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A path-by-path scaling condition

Path-by-path scaling condition

This leads to: Path-by-path scaling condition: Assume that there is a
ι ∈ [ 1

2
,1] such that for every σ ∈ [0,1), λ ≥ 1 we have∫ T

0

dr
∫ T−r

0

dt e−λ t |wt+r −wr︸ ︷︷ ︸
=:wr ,r+t

|−σ . λ
−1+ισ .

Easy to see: (ρ,γ)-irregularity implies path-by-path scaling.
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A path-by-path scaling condition

Theorem

Let u be a bounded quasi-solution to

∂tu+
1

2
∂xu

2 ◦dwt = 0 on R

and suppose that w ∈ Cη satis�es path-by-path scaling. Then, for all λ < 1+η−ι

1+η+ι
,

‖u‖L1([0,T ];W λ ,1(R)) < ∞.
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A path-by-path scaling condition

Thanks

Thanks!

Benjamin Gess Path-by-path regularization by noise 27 / 27


	Introduction
	Regularization by noise for nonlinear SPDE
	Path-by-path regularization by noise
	A path-by-path scaling condition

