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1. Introduction

Let O ⊆ Rd be a bounded domain with smooth boundary ∂O in arbitrary dimen-
sion d ∈ N, T > 0 and OT := [0, T ]×O. We consider partial differential equations
driven by rough signals of the type

dXt = ∆(|Xt|msgn(Xt))dt +

N∑
k=1

fkXt ◦ dz(k)
t , on OT

X(0) = X0, on O
(1)

with Dirichlet boundary conditions, m > 1, driven by signals z(k) ∈ C([0, T ];R)
and (for simplicity) fk ∈ C∞(Ō). Giving meaning to equation (1), in particular to
the occurring stochastic integral is part of the results.

Due to the spatial dependency of the functions fk the noise acts in space as
well as in time. For this type of noise even the generation of a continuous RDS
has been an open problem and is solved here ([2]) for the first time. In contrast
to the case of additive or real (i.e. non-spatially distributed) multiplicative noise,
the standard method of transforming the SPDE into a random PDE becomes
non-trivial, since the space-dependency of the noise destroys the monotonicity
structure of the transformed equation.

2. Construction of (pathwise) solutions

The construction of solutions to (1) for signals of bounded variation proceeds
by first transforming the equation into a PDE, then constructing solutions to
this transformed equation. More precisely, let µt(ξ) := −

∑N
k=1 fk(ξ)z

(k)
t . Then

Y := eµX satisfies the transformed equation

∂tYt = eµt∆((e−µtYt)
msgn(e−µtYt)), on OT (2)

with Dirichlet boundary conditions and initial condition Y0. This transformation
will be rigorously justified below. Our results extend [1] where under restrictions
on the dimension d and the order m unique existence of solutions for (2) with
essentially bounded initial conditions has been shown.

Let us define what we mean by a solution to (1) and (2). Let W n,p(O) be the
Sobolev space of order n in Lp(O), W n,p

0 (O) the subspace of functions vanish-
ing on ∂O, Cm,n(ŌT ) ⊆ C(ŌT ) be the set of all continuous functions on OT
having m continuous derivatives in time and n continuous derivatives in space
and let C1-var([0, T ];H) be the set of functions of bounded variation. We define
H1

0(O) := W 1,2
0 (O) and denote its dual by H. Further, let Φ(r) := |r|msgn(r).

Definition 1. For Y0 ∈ L1(O) we call Y ∈ L1(OT ) a (very) weak solution to (2) if
Φ(e−µY ) ∈ L1([0, T ];W 1,1

0 (O)) (∈ L1(OT ) resp.) and

−
∫
OT
Yr ∂rη dξdr −

∫
O
Y0η0 dξ =

∫
OT

Φ(e−µrYr)∆(eµrηr) dξdr,

for all η ∈ C1(ŌT ) (∈ C1,2(ŌT ) resp.) with η = 0 on [0, T ]× ∂O and on {T} × O.

For z ∈ C1-var([0, T ];RN) (very) weak solutions to (1) are defined similarly. A rig-
orous formulation for the transformation of (1) into (2) can be given as following:
Let X0 ∈ L1(O), z ∈ C1-var([0, T ];RN) and X ∈ L1(OT ) with X ∈ C([0, T ];H) or
X ∈ C([0, T ];L1(O)). Then X is a very weak solution to (1) iff Y := eµX is a very
weak solution to (2). We prove

Theorem 2. Essentially bounded very weak solutions to (2) are unique.

Theorem 3. Let Y0 ∈ L∞(O) and z ∈ C([0, T ];RN). There exists a unique weak
solution Y ∈ C([0, T ];H) ∩ L∞(OT ) to (2) satisfying Φ(e−µY ) ∈ L2([0, T ];H1

0(O)).
There is a function U : [0, T ]→ R̄ (taking the value∞ at t = 0) which is piecewise
smooth on (0, T ] such that for all Y0 ∈ L∞(O)

Yt ≤ Ut, a.e. in O, ∀t ∈ [0, T ].

If z ∈ C1-var([0, T ];RN) then this yields the existence of a weak solution to (1)
given by X = e−µY . A key point of Theorem 3 is that the upper bound Ut does
not depend on the initial condition Y0.

Solutions to (1) for continuous signals are constructed by an approximation of
the driving signal.

Definition 4. Let z ∈ C([0, T ];RN). We call X ∈ C([0, T ];H) a rough weak solu-
tion to (1) if X(0) = X0 and for all approximations z(ε) ∈ C1-var([0, T ];RN) of the
driving signal z with z(ε) → z in C([0, T ];RN) and corresponding weak solutions
X (ε) to (1) driven by z(ε) we have X (ε)

t → Xt in H for all t ∈ [0, T ].

Theorem 5. Let X0 ∈ L∞(O) and z ∈ C([0, T ];RN). Then there exists a unique
rough weak solution X to (1) given by X = e−µY , where Y is the corresponding
weak solution to (2). X satisfies Xt ≤ Ut a.e. in O for all t ∈ [0, T ], where U is as
in Theorem 3.

By proving Lipschitz continuity in the initial condition with respect to the L1(O)
norm we obtain the existence of solutions to (1) for initial conditions in L1(O) in a
limiting sense. Let Cw([0, T ];H) be the space of weakly continuous maps into H.

Definition 6. Let X0 ∈ L1(O) and z ∈ C([0, T ];RN). A function X ∈
Cw([0, T ];L1(O)) is said to be a limit solution to (1) if X(0) = X0 and for all approx-
imations X (δ)

0 ∈ L∞(O) with X
(δ)
0 → X0 in L1(O) and corresponding rough weak

solutions X (δ) to (1) we have X (δ)
t → Xt in L1(O) uniformly in time.

Theorem 7. Let z ∈ C([0, T ];RN). For each X0 ∈ L1(O) there is a unique limit
solution X to (1) satisfying Φ(X) ∈ L1(OT ). For X (i)

0 ∈ L1(O), i = 1, 2 the corre-
sponding limit solutions satisfy

sup
t∈[0,T ]

‖(X (1)
t −X

(2)
t )+‖L1(O) + ‖(Φ(X (1))− Φ(X (2)))+‖L1(OT ) ≤ C‖(X (1)

0 −X
(2)
0 )+‖L1(O).

In addition, Xt ≤ Ut a.e. in O for all t ∈ [0, T ], where Ut is as in Theorem 3.
As a special application we obtain a comparison principle: For X (1)

0 , X
(2)
0 ∈ L1(O)

with X (1)
0 ≤ X

(2)
0 a.e. we have X (1)

t ≤ X
(2)
t , for all t ∈ [0, T ], a.e. in O.

3. Regularity of solutions

We say that a quantity depends only on the data if it is a function of d, m, T . We
assume

There exist θ∗ > 0, R0 > 0 such that ∀x0 ∈ ∂O and ∀R ≤ R0 :

|O ∩BR(x0)| < (1− θ∗)|BR(x0)|.
(O1)

By proving that regularity results due to Emmanuele DiBenedetto may be applied
in our situation we obtain

Theorem 8. Let z ∈ C([0, T ];RN), X0 ∈ L1(O) and X be the corresponding limit
solution. Then
1. For every τ > 0, X is uniformly continuous on [τ, T ]× Ō with modulus of conti-

nuity depending only on the data, θ∗ and τ .
2. If X0 ∈ L∞(O) is continuous on a compact set K ⊆ O, then X is uniformly

continuous on [0, T ]×K ′ for every compact set K ′ ⊆ K̊, with modulus of conti-
nuity depending only on the data, dist(K, ∂O), dist(K ′, ∂K), ‖X0‖L∞(O) and the
modulus of continuity of X0 over K.

4. Generation of RDS

We now pass to the case of stochastically perturbed porous media equations.
Let (Ω,F ,Ft,P) be a filtered probability space, (zt)t∈R be an RN-valued adapted
stochastic process and ((Ω,F ,P), (θt)t∈R) be a metric dynamical system. We as-
sume

(Strictly stationary increments) zt(ω)− zs(ω) = zt−s(θsω), ∀t, s ∈ R, ω ∈ Ω.
(Regularity) zt has continuous paths.

We have assumed z0 = 0 for notational convenience only. In particular, applica-
tions include fractional Brownian Motion with arbitrary Hurst parameter. We then
consider the SPDE

dXt = ∆Φ(Xt)dt +

N∑
k=1

fkXt ◦ dz(k)
t , on OT

X(0) = X0, on O.
(3)

For x ∈ L1(O) and ω ∈ Ω let X(t, s;ω)x denote the solution to (1) with initial value
x at time s driven by the continuous signal z·(ω).

If the signal z is given by a continuous semimartingale then (3) can be inter-
preted in the sense of stochastic Stratonovich integration. In this case we show
that the limit solution X is a probabilistic solution to (3). Together with the path-
wise convergence of the approximants X (ε) → X obtained in Theorem 5 via
approximation by paths of bounded variation this yields a pathwise Wong-Zakai
result.
Theorem 9. The map ϕ given by ϕ(t − s, θsω)x := X(t, s;ω)x (t ≥ s, ω ∈ Ω, x ∈
L1(O)) is a continuous RDS and ϕ is order preserving, i.e. ϕ(t, ω)x1 ≤ ϕ(t, ω)x2

a.e. in O if x1, x2 ∈ L1(O) with x1 ≤ x2 a.e. in O.

5. Existence of a random attractor

Let D be the system of all random closed sets. The RDS ϕ satisfies the same
regularity and regularizing properties as in Theorem 8. Using this we prove

Theorem 10. The RDS ϕ has a D-random attractor A (as an RDS on L1(O)). A is
compact in each Lp(O) and attracting in Lp(O)-norm, p ∈ [1,∞). Moreover, A(ω)
is a bounded set in L∞(O) and the functions in A(ω) restricted to any compact
set K ⊆ O are equicontinuous on K. If (O1) is satisfied, then A(ω) is compact in
C(Ō) and attracting in L∞(O)-norm.
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