Random attractors for stochastic porous media equations

Bielefeld University

Stochastics and

Real World Models

perturbed by space-time linear multiplicative noise [2]. Benjamin Gess

International Graduate College

International Graduate College "Stochastics and Real World Models", Beijing — Bielefeld

bgess@math.uni-bielefeld.de

1. Introduction

Let $\mathcal{O} \subseteq \mathbb{R}^d$ be a bounded domain with smooth boundary $\partial \mathcal{O}$ in arbitrary dimension $d \in \mathbb{N}$, T > 0 and $\mathcal{O}_T := [0, T] \times \mathcal{O}$. We consider partial differential equations driven by rough signals of the type

$$dX_t = \Delta(|X_t|^m sgn(X_t))dt + \sum_{k=1}^N f_k X_t \circ dz_t^{(k)}, \text{ on } \mathcal{O}_T$$

$$X(0) = X_0, \text{ on } \mathcal{O}$$
(1)

with Dirichlet boundary conditions, m > 1, driven by signals $z^{(k)} \in C([0,T];\mathbb{R})$

Definition 6. Let $X_0 \in L^1(\mathcal{O})$ and $z \in C([0,T]; \mathbb{R}^N)$. A function $X \in C^w([0,T]; L^1(\mathcal{O}))$ is said to be a limit solution to (1) if $X(0) = X_0$ and for all approximations $X_0^{(\delta)} \in L^\infty(\mathcal{O})$ with $X_0^{(\delta)} \to X_0$ in $L^1(\mathcal{O})$ and corresponding rough weak solutions $X^{(\delta)}$ to (1) we have $X_t^{(\delta)} \to X_t$ in $L^1(\mathcal{O})$ uniformly in time.

Theorem 7. Let $z \in C([0,T]; \mathbb{R}^N)$. For each $X_0 \in L^1(\mathcal{O})$ there is a unique limit solution X to (1) satisfying $\Phi(X) \in L^1(\mathcal{O}_T)$. For $X_0^{(i)} \in L^1(\mathcal{O})$, i = 1, 2 the corresponding limit solutions satisfy

 $\sup_{t \in [0,T]} \| (X_t^{(1)} - X_t^{(2)})^+ \|_{L^1(\mathcal{O})} + \| (\Phi(X^{(1)}) - \Phi(X^{(2)}))^+ \|_{L^1(\mathcal{O}_T)} \le C \| (X_0^{(1)} - X_0^{(2)})^+ \|_{L^1(\mathcal{O})}.$

In addition, $X_t \leq U_t$ a.e. in \mathcal{O} for all $t \in [0, T]$, where U_t is as in Theorem 3.

and (for simplicity) $f_k \in C^{\infty}(\overline{O})$. Giving meaning to equation (1), in particular to the occurring stochastic integral is part of the results.

Due to the spatial dependency of the functions f_k the noise acts in space as well as in time. For this type of noise even the generation of a continuous RDS has been an open problem and is solved here ([2]) for the first time. In contrast to the case of additive or real (i.e. non-spatially distributed) multiplicative noise, the standard method of transforming the SPDE into a random PDE becomes non-trivial, since the space-dependency of the noise destroys the monotonicity structure of the transformed equation.

2. Construction of (pathwise) solutions

The construction of solutions to (1) for signals of bounded variation proceeds by first transforming the equation into a PDE, then constructing solutions to this transformed equation. More precisely, let $\mu_t(\xi) := -\sum_{k=1}^N f_k(\xi) z_t^{(k)}$. Then $Y := e^{\mu}X$ satisfies the transformed equation

 $\partial_t Y_t = e^{\mu_t} \Delta((e^{-\mu_t} Y_t)^m sgn(e^{-\mu_t} Y_t)), \text{ on } \mathcal{O}_T$ (2)

with Dirichlet boundary conditions and initial condition Y_0 . This transformation will be rigorously justified below. Our results extend [1] where under restrictions on the dimension d and the order m unique existence of solutions for (2) with essentially bounded initial conditions has been shown.

Let us define what we mean by a solution to (1) and (2). Let $W^{n,p}(\mathcal{O})$ be the Sobolev space of order n in $L^p(\mathcal{O})$, $W_0^{n,p}(\mathcal{O})$ the subspace of functions vanishing on $\partial \mathcal{O}$, $C^{m,n}(\bar{\mathcal{O}}_T) \subseteq C(\bar{\mathcal{O}}_T)$ be the set of all continuous functions on \mathcal{O}_T having m continuous derivatives in time and n continuous derivatives in space and let $C^{1-\text{var}}([0,T];H)$ be the set of functions of bounded variation. We define $H_0^1(\mathcal{O}) := W_0^{1,2}(\mathcal{O})$ and denote its dual by H. Further, let $\Phi(r) := |r|^m sgn(r)$. As a special application we obtain a comparison principle: For $X_0^{(1)}, X_0^{(2)} \in L^1(\mathcal{O})$ with $X_0^{(1)} \leq X_0^{(2)}$ a.e. we have $X_t^{(1)} \leq X_t^{(2)}$, for all $t \in [0, T]$, a.e. in \mathcal{O} .

3. Regularity of solutions

We say that a quantity depends only on the data if it is a function of d, m, T. We assume

There exist $\theta^* > 0$, $R_0 > 0$ such that $\forall x_0 \in \partial \mathcal{O}$ and $\forall R \leq R_0$: $|\mathcal{O} \cap B_R(x_0)| < (1 - \theta^*)|B_R(x_0)|.$ ($\mathcal{O}1$)

By proving that regularity results due to Emmanuele DiBenedetto may be applied in our situation we obtain

Theorem 8. Let $z \in C([0,T]; \mathbb{R}^N)$, $X_0 \in L^1(\mathcal{O})$ and X be the corresponding limit solution. Then

- 1. For every $\tau > 0$, X is uniformly continuous on $[\tau, T] \times \overline{\mathcal{O}}$ with modulus of continuity depending only on the data, θ^* and τ .
- 2. If $X_0 \in L^{\infty}(\mathcal{O})$ is continuous on a compact set $K \subseteq \mathcal{O}$, then X is uniformly continuous on $[0,T] \times K'$ for every compact set $K' \subseteq \mathring{K}$, with modulus of continuity depending only on the data, $dist(K, \partial \mathcal{O})$, $dist(K', \partial K)$, $||X_0||_{L^{\infty}(\mathcal{O})}$ and the modulus of continuity of X_0 over K.

4. Generation of RDS

We now pass to the case of stochastically perturbed porous media equations. Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ be a filtered probability space, $(z_t)_{t \in \mathbb{R}}$ be an \mathbb{R}^N -valued adapted

Definition 1. For $Y_0 \in L^1(\mathcal{O})$ we call $Y \in L^1(\mathcal{O}_T)$ a (very) weak solution to (2) if $\Phi(e^{-\mu}Y) \in L^1([0,T]; W_0^{1,1}(\mathcal{O}))$ ($\in L^1(\mathcal{O}_T)$ resp.) and

$$-\int_{\mathcal{O}_T} Y_r \,\partial_r \eta \,d\xi dr - \int_{\mathcal{O}} Y_0 \eta_0 \,d\xi = \int_{\mathcal{O}_T} \Phi(e^{-\mu_r} Y_r) \Delta(e^{\mu_r} \eta_r) \,d\xi dr,$$

for all $\eta \in C^1(\bar{\mathcal{O}}_T)$ ($\in C^{1,2}(\bar{\mathcal{O}}_T)$ resp.) with $\eta = 0$ on $[0,T] \times \partial \mathcal{O}$ and on $\{T\} \times \mathcal{O}$.

For $z \in C^{1-\text{var}}([0,T]; \mathbb{R}^N)$ (very) weak solutions to (1) are defined similarly. A rigorous formulation for the transformation of (1) into (2) can be given as following: Let $X_0 \in L^1(\mathcal{O})$, $z \in C^{1-\text{var}}([0,T]; \mathbb{R}^N)$ and $X \in L^1(\mathcal{O}_T)$ with $X \in C([0,T]; H)$ or $X \in C([0,T]; L^1(\mathcal{O}))$. Then X is a very weak solution to (1) iff $Y := e^{\mu}X$ is a very weak solution to (2). We prove

Theorem 2. Essentially bounded very weak solutions to (2) are unique.

Theorem 3. Let $Y_0 \in L^{\infty}(\mathcal{O})$ and $z \in C([0,T]; \mathbb{R}^N)$. There exists a unique weak solution $Y \in C([0,T]; H) \cap L^{\infty}(\mathcal{O}_T)$ to (2) satisfying $\Phi(e^{-\mu}Y) \in L^2([0,T]; H_0^1(\mathcal{O}))$. There is a function $U : [0,T] \to \mathbb{R}$ (taking the value ∞ at t = 0) which is piecewise smooth on (0,T] such that for all $Y_0 \in L^{\infty}(\mathcal{O})$

 $Y_t \leq U_t$, a.e. in \mathcal{O} , $\forall t \in [0, T]$.

If $z \in C^{1-\text{var}}([0,T];\mathbb{R}^N)$ then this yields the existence of a weak solution to (1) given by $X = e^{-\mu}Y$. A key point of Theorem 3 is that the upper bound U_t does not depend on the initial condition V

stochastic process and $((\Omega, \mathcal{F}, \mathbb{P}), (\theta_t)_{t \in \mathbb{R}})$ be a metric dynamical system. We assume

(Strictly stationary increments) $z_t(\omega) - z_s(\omega) = z_{t-s}(\theta_s \omega), \forall t, s \in \mathbb{R}, \omega \in \Omega$.

(Regularity) z_t has continuous paths.

We have assumed $z_0 = 0$ for notational convenience only. In particular, applications include fractional Brownian Motion with arbitrary Hurst parameter. We then consider the SPDE

$$dX_t = \Delta \Phi(X_t)dt + \sum_{k=1}^N f_k X_t \circ dz_t^{(k)}, \text{ on } \mathcal{O}_T$$

$$X(0) = X_0, \text{ on } \mathcal{O}.$$
(3)

For $x \in L^1(\mathcal{O})$ and $\omega \in \Omega$ let $X(t, s; \omega)x$ denote the solution to (1) with initial value x at time s driven by the continuous signal $z_{\cdot}(\omega)$.

If the signal z is given by a continuous semimartingale then (3) can be interpreted in the sense of stochastic Stratonovich integration. In this case we show that the limit solution X is a probabilistic solution to (3). Together with the pathwise convergence of the approximants $X^{(\varepsilon)} \rightarrow X$ obtained in Theorem 5 via approximation by paths of bounded variation this yields a pathwise Wong-Zakai result.

Theorem 9. The map φ given by $\varphi(t - s, \theta_s \omega) x := X(t, s; \omega) x$ ($t \ge s, \omega \in \Omega, x \in L^1(\mathcal{O})$) is a continuous RDS and φ is order preserving, i.e. $\varphi(t, \omega) x_1 \le \varphi(t, \omega) x_2$ a.e. in \mathcal{O} if $x_1, x_2 \in L^1(\mathcal{O})$ with $x_1 \le x_2$ a.e. in \mathcal{O} .

not depend on the initial condition Y_0 .

Solutions to (1) for continuous signals are constructed by an approximation of the driving signal.

Definition 4. Let $z \in C([0,T]; \mathbb{R}^N)$. We call $X \in C([0,T]; H)$ a rough weak solution to (1) if $X(0) = X_0$ and for all approximations $z^{(\varepsilon)} \in C^{1-\text{var}}([0,T]; \mathbb{R}^N)$ of the driving signal z with $z^{(\varepsilon)} \to z$ in $C([0,T]; \mathbb{R}^N)$ and corresponding weak solutions $X^{(\varepsilon)}$ to (1) driven by $z^{(\varepsilon)}$ we have $X_t^{(\varepsilon)} \to X_t$ in H for all $t \in [0,T]$.

Theorem 5. Let $X_0 \in L^{\infty}(\mathcal{O})$ and $z \in C([0, T]; \mathbb{R}^N)$. Then there exists a unique rough weak solution X to (1) given by $X = e^{-\mu}Y$, where Y is the corresponding weak solution to (2). X satisfies $X_t \leq U_t$ a.e. in \mathcal{O} for all $t \in [0, T]$, where U is as in Theorem 3.

By proving Lipschitz continuity in the initial condition with respect to the $L^1(\mathcal{O})$ norm we obtain the existence of solutions to (1) for initial conditions in $L^1(\mathcal{O})$ in a limiting sense. Let $C^w([0,T];H)$ be the space of weakly continuous maps into H.

5. Existence of a random attractor

Let D be the system of all random closed sets. The RDS φ satisfies the same regularity and regularizing properties as in Theorem 8. Using this we prove

Theorem 10. The RDS φ has a \mathcal{D} -random attractor A (as an RDS on $L^1(\mathcal{O})$). A is compact in each $L^p(\mathcal{O})$ and attracting in $L^p(\mathcal{O})$ -norm, $p \in [1, \infty)$. Moreover, $A(\omega)$ is a bounded set in $L^{\infty}(\mathcal{O})$ and the functions in $A(\omega)$ restricted to any compact set $K \subseteq \mathcal{O}$ are equicontinuous on K. If $(\mathcal{O}1)$ is satisfied, then $A(\omega)$ is compact in $C(\overline{\mathcal{O}})$ and attracting in $L^{\infty}(\mathcal{O})$ -norm.

References

[1] Viorel Barbu and Michael Röckner. On a random scaled porous medium equation. *to appear in: J. Differential Equations*, pages 1–22, 2011.

[2] Benjamin Gess. Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. *arXiv:1108.2413v1*, 2011.