Finite time extinction for stochastic sign fast diffusion and self-organized criticality.

Benjamin Gess

Fakultät für Mathematik Universität Bielefeld

Recent Trends in Differential Equations: Analysis and Discretisation Methods, Berlin, November 2013

preprint:[arXiv:1310.6971].

- Self-organized criticality
- 2 Derivation of the BTW model from a cellular automaton
- Finite time extinction and self-organized criticality
- 4 Finite time extinction for stochastic BTW

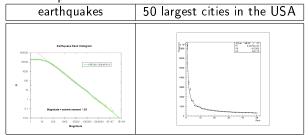
Self-organized criticality

Self-organized criticality

• Many (complex) systems in nature exhibit power law scaling: The number of an event N(s) scales with the event size s as

$$N(s) \sim s^{-lpha}$$

• For example:



- Phase-transitions: The Ising model, ferromagnetism
- Critical temperature $T = T_c$:
 - strongly correlated: small perturbations can have global effects
 - no specific length scale (complex system, criticality)
- Observe: For $T = T_c$, power-law scaling for N(s) being the number of +1 clusters of size s.

- Ising model needs precise tuning $T = T_c$ to display power law scaling
- How can this occur in nature?
- Idea of self-organized criticality: [Bantay, Ianosi; Physica A, 1992]

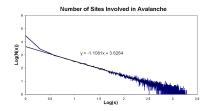
"Criticality" refers to the power-law behavior of the spatial and temporal distributions, characteristic of critical phenomena.

"Self-organized" refers to the fact that these systems naturally evolve into a critical state without any tuning of the external parameters, i.e. the critical state is an attractor of the dynamics.

• Bak, Tang, Wiesenfeld: Sandpile as a toy model of self-organized criticality

Sandpiles

- Two scales: Slow energy injection (adding sand), fast energy diffusion (avalanches)
- Criticality: No typical avalanche size, local perturbation may have global effects
- Power law scaling: N(s) is the number of valances of size s.



Derivation of the BTW model from a cellular automaton

Derivation of the BTW model from a cellular automaton

Derivation of the BTW model from a cellular automaton

Cellular automata model

- The following model goes back to [Bantay, lanosi; Physica A, 1992].
- Aim: Define a cellular automaton displaying SOC.
- Consider an $N \times N$ square lattice, representing a discrete region $\mathscr{O} = \{(i,j)\}_{i,j=1}^{N}$.
- At each site (i,j) the height of the sandpile at time t is h_{ij}^t .
- The system is perturbed externally until the height *h* exceeds a threshold (critical) value *h^c*.

Cellular automata model

• Then, a toppling (avalanche) event occurs: The toppling at any 'activated' site (k, l) is described by:

$$h_{ij}^{t+1}
ightarrow h_{ij}^t - M_{ij}^{kl}, \quad orall (i,j) \in \mathscr{O},$$

where

$$M_{ij}^{kl} = egin{cases} 4 & (k,l) = (i,j) \ -1 & (k,l) \sim (i,j) \ 0 & ext{otherwise}. \end{cases}$$

• Rewrite as:

$$h_{ij}^{t+1} - h_{ij}^t = -M_{ij}^{kl} H(h_{ij}^t - h_{ij}^c), \quad \forall (i,j) \in \mathscr{O},$$

where H is the Heaviside function.

• The avalanches are continued until no site exceeds the threshold (which obviously happens after finitely many steps).

Cellular automata model

• As an example:

Continuum limit

• Passing to a continuum limit in

$$h_{ij}^{t+1}-h_{ij}^t=-M_{ij}^{kl}H(h_{ij}^t-h_{ij}^c),\quad \forall (i,j)\in \mathscr{O},$$

gives (informally)

$$\frac{\partial}{\partial t}X(t,\xi) = \Delta H(X(t,\xi) - X^{c}(\xi)),$$

where X is the continuous height-density function.

• In addition we impose zero Dirichlet boundary conditions:

$$H(X(t,\xi)-X^{c}(\xi))=0, \text{ on } \partial \mathscr{O}.$$

• Note: Only the relaxation/diffusion part modeled here. For full SOC-model we would have to include the external, random energy input.

Finite time extinction and self-organized criticality

Finite time extinction and SOC

Finite time extinction and self-organized criticality

- Question: Do avalanches end in finite time?
- Recall:

$$\frac{\partial}{\partial t}X(t,\xi) = \Delta H(X(t,\xi) - X^{c}(\xi)),$$

- We will restrict to the supercritical case, i.e. supposing $x_0 \ge X^c$.
- Substituting $X \to X X^c$ and using $X \ge 0$ yields

$$\frac{\partial}{\partial t}X(t,\xi) = \Delta \operatorname{sgn}(X(t,\xi)),$$
$$X(0,\xi) = x_0(\xi)$$

with $x_0 \ge 0$ and zero Dirichlet boundary conditions:

$$\operatorname{sgn}(X(t,\xi)) = 0$$
, on $\partial \mathscr{O}$.

• Informally:

$$\Delta \operatorname{sgn}(X) = \delta_0(X) \Delta X + \operatorname{sgn}''(X) |\nabla X|^2.$$

• Avalanches end in finite time = Finite time extinction.

Finite time extinction and self-organized criticality

Finite time extinction for deterministic PDE

Finite time extinction for deterministic PDE

Finite time extinction for singular ODE

• Consider the singular ODE

$$\dot{f}=-cf^{lpha},\quad lpha\in(0,1),\,\,c>0.$$

• Then:

$$(f^{1-\alpha})'=-(1-\alpha).$$

• We obtain

$$f^{1-\alpha}(t) = f^{1-\alpha}(0) - (1-\alpha)ct$$

which implies finite time extinction.

• [Diaz, Diaz; CPDE, 1979] finite time extinction (FTE) was first proven for

$$\frac{\partial}{\partial t}X(t,\xi) = \Delta \operatorname{sgn}(X(t,\xi)).$$

• In [Barbu; MMAS, 2012] another (more robust) approach based on energy methods was introduced.

- Informally the proof boils down to a combination of an L^1 and an L^{∞} estimate of the solution:
- Informal L^{∞} estimate:

$$\|X(t)\|_{\infty} \leq \|x_0\|_{\infty}, \quad \forall t \geq 0.$$

• Informal L¹-estimate:

$$\begin{split} \partial_t \int_{\mathscr{O}} |X(t,\xi)| d\xi &= \int_{\mathscr{O}} \operatorname{sgn}(X(t,\xi)) \Delta \operatorname{sgn}(X(t,\xi)) d\xi \\ &= -\int_{\mathscr{O}} |\nabla \operatorname{sgn}(X(t,\xi))|^2 d\xi \\ &\leq - \left(\int_{\mathscr{O}} |\operatorname{sgn}(X(t,\xi))|^p d\xi \right)^{\frac{2}{p}} \\ &\leq - \left(|\{\xi | X(t,\xi) \neq 0\}| \right)^{\frac{2}{p}}, \end{split}$$

for some (dimension dependent) p > 2. Note: $\frac{2}{p} < 1$.

Observe

$$egin{aligned} &\int_{\mathscr{O}} |X(t,\xi)| d\xi \leq \|X(t)\|_{\infty} |\{\xi|X(t,\xi)
eq 0\}|. \ &\leq \|x_0\|_{\infty} |\{\xi|X(t,\xi)
eq 0\}|. \end{aligned}$$

• Using this above gives

$$\partial_t \int_{\mathscr{O}} |X(t,\xi)| d\xi \leq -rac{1}{\|x_0\|_\infty^rac{2}{p}} \left(\int_{\mathscr{O}} |X(t,\xi)| d\xi
ight)^rac{2}{p}.$$

• We are left with the singular ODE

$$\dot{f}=-cf^{lpha},\quad lpha\in(0,1),\,\,c>0$$

for which we have seen that finite time extinction holds.

Finite time extinction for stochastic BTW

Finite time extinction for stochastic BTW

Finite time extinction for stochastic BTW

The stochastic BTW model

- In [Díaz-Guilera; EPL (Europhysics Letters), 1994], [Giacometti, Diaz-Guilera; Phys. Rev. E, 1998], [Díaz-Guilera; Phys. Rev. A, 1992] it was pointed out that it is more realistic to include stochastic perturbations.
- This leads to SPDE of the form

$$dX_t = \Delta H(X_t - X^c) + B(X_t - X^c) dW_t,$$

with appropriate diffusion coefficients B.

• We study linear multiplicative noise, i.e.

$$dX_t = \Delta H(X_t - X^c) + \sum_{k=1}^N f_k(X_t - X^c) d\beta_t^k.$$

• Question: Do avalanches end in finite time?

The stochastic BTW model

Recall:

$$dX_t = \Delta \operatorname{sgn}(X_t) + \sum_{k=1}^N f_k X_t d\beta_t^k,$$

with zero Dirichlet boundary conditions.

• Finite time extinction can be reformulated in terms of the extinction time

$$\tau_0(\omega) := \inf\{t \ge 0 | X_t(\omega) = 0, \text{ a.e. in } \mathscr{O}\}.$$

We distinguish the following concepts:

(F1) Extinction with positive probability for small initial conditions: $\mathbb{P}[\tau_0 < \infty] > 0$, for small $X_0 = x_0$.

(F2) Extinction with positive probability: $\mathbb{P}[\tau_0 < \infty] > 0$, for all $X_0 = x_0$.

(F3) Finite time extinction: $\mathbb{P}[\tau_0 < \infty] = 1$, for all $X_0 = x_0$.

Some known results

• Existence and uniqueness of solutions to

$$dX_t \in \Delta \phi(X_t) dt + \sum_{k=1}^N f_k X_t d\beta_t^k$$

with ϕ being possibly multi-valued goes back to [Barbu, Da Prato, Röckner; CMP, 2009].

- In the same paper (F1) for the Zhang model is shown for d = 1.
- In [Barbu, Da Prato, Röckner; JMAA, 2012] this was extended to prove (F1) for the BTW model for d = 1.
- In the recent work [Röckner, Wang; JLMS, 2013] finite time extinction for the Zhang model has been solved.
- In case of additive noise

$$dX_t \in \Delta \operatorname{sgn}(X_t) dt + dW_t,$$

ergodicity has been shown for d = 1 in [Gess, Tölle; JMPA, to appear].

• In [Barbu, Röckner; ARMA, 2013] (F1) has been shown for the related stochastic total variation flow for $d \le 3$.

Main result

Theorem (Main result)

Let $x_0 \in L^{\infty}(\mathscr{O})$, X be the unique variational solution to BTW and let $\tau_0(\omega) := \inf\{t \ge 0 | X_t(\omega) = 0, \text{ for a.e. } \xi \in \mathscr{O}\}.$

Then finite time extinction holds, i.e.

$$\mathbb{P}[\tau_0 < \infty] = 1.$$

For every $p > \frac{d}{2} \vee 1$, the extinction time $\tau_0(\omega)$ may be chosen uniformly for x_0 bounded in $L^p(\mathscr{O})$.

Transformation

Recall:

$$dX_t = \Delta \operatorname{sgn}(X_t) + \sum_{k=1}^N f_k X_t d\beta_t^k,$$

• Our approach to FTE will be based on considering the following transformation: Set $\mu_t := \sum_{k=1}^N f_k \beta_t^k$, $\tilde{\mu} := \sum_{k=1}^N f_k^2$ and $Y_t := e^{-\mu_t} X_t$. An informal calculation shows

$$\partial Y_t \in e^{\mu_t} \Delta \operatorname{sgn}(Y_t) - \tilde{\mu} Y_t.$$
 (*)

• Compare the deterministic setting:

$$\partial Y_t \in \Delta \operatorname{sgn}(Y_t).$$

Outline of the proof

• There are two main ingredients of the proof:

- A uniform control on $||X_t||_p$ for all $p \ge 1$.
- 2 An energy inequality for a weighted L^1 -norm.
- On an intuitive level the arguments become clear by approximating

$$r^{[m]} := |r|^{m-1}r \to \operatorname{sgn}, \text{ for } m \downarrow 0.$$

To make these arguments rigorous, in fact a different (non-singular, non-degenerate) approximation of sgn is used.

• In the following let Y_t be a solution to

$$\partial_t Y_t \in e^{\mu_t} \Delta Y_t^{[m]} - \tilde{\mu} Y_t.$$

Step 1: Informal L^p bound

- Step 1: A uniform control on $||X_t||_p$ for all $p \ge 1$.
- We may informally compute for all $p \ge 1$:

$$\begin{split} \partial_t \int_{\mathscr{O}} |Y_t|^p d\xi =& p \int_{\mathscr{O}} Y_t^{[p-1]} e^{\mu_t} \Delta Y_t^{[m]} d\xi \\ =& -\frac{4(p-1)mp}{(p+m-1)^2} \int_{\mathscr{O}} e^{\mu_t} \left(\nabla |Y_t|^{\frac{p+m-1}{2}} \right)^2 d\xi \\ &+ \frac{pm}{p+m-1} \int_{\mathscr{O}} |Y_t|^{p+m-1} \Delta e^{\mu_t} d\xi. \end{split}$$

• Taking p>1 and then $m \rightarrow 0$ we may "deduce" from this

$$\partial_t \int_{\mathscr{O}} |Y_t|^p d\xi \leq 0.$$

Step 2: Informal " $L^{1"}$ bound

• **Step 2:** An energy inequality for a weighted L¹-norm.

$$\begin{split} \partial_t \int_{\mathscr{O}} |Y_t|^p d\xi &= -\frac{4(p-1)mp}{(p+m-1)^2} \int_{\mathscr{O}} e^{\mu_t} \left(\nabla |Y_t|^{\frac{p+m-1}{2}} \right)^2 d\xi \\ &+ \frac{pm}{p+m-1} \int_{\mathscr{O}} |Y_t|^{p+m-1} \Delta e^{\mu_t} d\xi, \ p \geq 1. \end{split}$$

• Choose
$$p = m + 1$$
 and let $m \to 0$. We obtain

$$\partial_t \int_{\mathscr{O}} |Y_t| d\xi = -\int_{\mathscr{O}} e^{\mu_t} \left(\nabla \operatorname{sgn}(Y_t) \right)^2 d\xi + \frac{1}{2} \int_{\mathscr{O}} \Delta e^{\mu_t} d\xi$$

• Recall: deterministic case

$$\partial_t \int_{\mathscr{O}} |Y_t| d\xi = -\int_{\mathscr{O}} |\nabla \operatorname{sgn}(Y_t)|^2 d\xi.$$

Step 2: Informal " L^{1} " bound

Key trick: Use a weighted L^1 -norm

• Let ϕ be the classical solution to

$$egin{array}{lll} \Delta arphi = -1, & ext{on} \ \mathscr{O} \ arphi = 1, & ext{on} \ \partial \mathscr{O}. \end{array}$$

Note $1 \le \varphi \le \|\varphi\|_{\infty} =: C_{\varphi}$. • We informally compute

$$\partial_t \int_{\mathscr{O}} \varphi |Y_t| d\xi = -\int_{\mathscr{O}} \varphi e^{\mu_t} \left(\nabla \operatorname{sgn}(Y_t) \right)^2 d\xi + \frac{1}{2} \int_{\mathscr{O}} \Delta(\varphi e^{\mu_t}) d\xi.$$

Note

$$\Delta(\varphi e^{\mu_t}) = -e^{\mu_t} + 2\nabla\varphi \cdot \nabla e^{\mu_t} + \varphi \Delta e^{\mu_t}$$

has a negative sign for small times $(e^{\mu_t} \approx 1)!$

• Shift the initial time

$$\partial_t \int_{\mathscr{O}} e^{-\mu_s} \varphi |Y_t| d\xi = -\int_{\mathscr{O}} e^{\mu_t - \mu_s} \varphi (\nabla \operatorname{sgn}(Y_t))^2 d\xi + \frac{1}{2} \int_{\mathscr{O}} \operatorname{sgn}(Y_t)^2 \Delta e^{\mu_t - \mu_s} \varphi d\xi$$

Thanks

Thanks!