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Aim:
- From a statistical physics perspective: How do partial differential equations
(PDEs) arise? What do they describe?

- When they are insufficient, which mathematical structures go beyond?
- Generally: How to correct for fluctuations around PDEs?

Here: Toy model: Zero range process and (nonlinear) diffusion equations



From particles to PDEs

“Microscopic world”: Interacting atoms. Newtonian dynamics yield a high dimen-
sional differential equation.

Stochastic particle systems as simplified mathematical models. An example:

The zero range process
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State space My := Ng"’, i.e. configurations 1 : Ty — Np : System in state 7 if
container k contains n(k) particles.

Local jump rate function g : Ng — R, here g(n) = n® a > 1.
Zero mean transition probability p(k, /), that is,

plk, 1) = pk—1), 3" ko(k) =0.
k

Markov jump process 7: n(k, t) = number of particles in box k at time ¢.



For the “totally asymmetric simple exclusion process” (TASEP) this looks like this




For the “totally asymmetric simple exclusion process’ (TASEP) this looks like this

Hilbert's Sixth Problem: “[...] Boltzmann's work
on the principles of mechanics suggests the prob-
lem of developing mathematically the limiting
processes, there merely indicated, which lead
from the atomistic view to the laws of motion
of continua."
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Microscopic scale: Particles Macroscopic scale: PDEs
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Gridsize = % Mean dynamics

Empirical density field:

(e % 25

k

(x)n(k, tN?) : [0, T] x Q — P(Tn).

K
N

[Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
() =" p(t) dx

with 5 : [0, T] x Ty — R a solution to
atﬁ = 8qu)(;5)

with ® the mean local jump rate ®(p) = E, [g(n(0))].
This corresponds to a law of large numbers.
Loss of information:

» Fluctuations, rare events / large deviations?

» Model / Approximation error: u" = 5+ O(N’%)



Typical/mean behavior:

fit) = =V V(u(t))

V(p) = pl* = lp® : oS

Fluctuations make a difference on long time-scales

aN(t) = =V V(M (2)) + N2 W(2)

Importance: Tipping points, climate dynamics, failure of mechanical devices, ...
Three extensions:

- Fluctuating Hydrodynamics / Stochastic PDEs

- Rare events / large deviations

- Gradient flow structure



Fluctuating Hydrodynamics / Stochastic PDEs?

Microscopic scale: Particles Macroscopic scale: PDEs
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Gridsize = % Mean dynamics

Microscopic scale: Particles Mesoscopic scale: Conservative Macroscopic scale: PDEs
SPDEs
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Gridsize = % Fluctuation correction Mean dynamics

Ansatz: Conservative SPDEs

1

atpN = 6XX¢(PN) i N~z L (cbi(pN)fN) )

1 nd white in time.

with €N noise spatiallv correlated with decorrelation lencth



Rare events/ Large deviations:
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N(e) = =V V(uN(2)) + N=2 W (t)
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Probability to observe a fluctuation p
Plu" = p] = eV} N large,
g% ds: p(s) = =V V(p(s)) + g(s)}-

= (0],

with /(p) = |nf{f0
Note: p is a solution iff /(p)



Rare events / large deviations?
PluN ~ p] = e N N large

Zero range process

-
I(p) =inf / lglPdxds : g € L2, 9,p= Dp™ + V- (p*/°g)
o Jr¢

"skeleton equation"

Theorem ([Large deviation principle, Benois, Kipnis, Landim; 1995])
We have

e NTl)) <PV & p] S NI
where A is the set of nice fluctuations p that are solution to
8ep = Dp™ + V - (0*/%g)

for some g € C.32. Problem: | = 1,7

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation

[Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020].
Counter-example for Boltzmann [Hevdecker: 2021].



Recall

-
I(p) =inf / / lglPdxds : g € L2, 9,p= Dp™ + V- (p*/?g)
o Jr¢

"skeleton equation"

Problem:
I =1a=sup{d(p)|¢: X = Ris Ls.c. andp < [4}7?

Existence of a “recovery sequence™? Consider fluctuation p so that /(p) < oco.

2
That means, for some g € kg

Oep = Dp® +V - (0*g).

Need to find sequence of nice fluctuations p° € A so that p° — p and /(p°) —
I(p). That is, find g° € C3([0, T] x T) so that ||g°||;z_ — ||g/z and

Bep® = A(p°)* +V - ((0)*/%¢°)
satisfies p© — p.

Difficult problem: Open problem since [Benois, Kipnis, Landim; 1995].



Skeleton equation

Oep=Dp*+V-(p*? g ).

(S5

How difficult is the well-posedness?

Literature: [DiPerna, Lions; Invent. Math. 1989], [Le Bris, Lions; 2008], [Karlsen,
Risebro; 2003], [Barbu, Réckner; 2021], roughly speaking

dep = AD(p) + V - (W(p)g)

for g € Wkt

loc,x’

divg € L*°, V locally Lipschitz.



Scaling and energy-criticality: Let p be a solution. Set (¢, x) = Ap(7t,nx) and
compute

.
i OO SR (o e 0507 2)):
t /\a 12 A1y
— =
=:g(t,x)
Choose /\0%1772 =1 and aim to “zoom in", i.e. to consider A\, 7, — 0.

Preserving initial mass in energy space L"(R%): A = n?
We get
1)+2

4 (a— a/2)77+17

d
HgHL"L" =L ”HgHLfL;’-

Need the exponent to be non-negative, otherwise the skeleton equation is super-
critical (convection dominated).

Optimizing in r yields r = 1 and we get

«
1“!‘*2 +7a
2 q p

i.e. p=q=2is critical for g € LY(R, ;; LP(RZ; RY)).



Ingredients of the proof: Nonlinear “DiPerna-Lions” theory [DiPerna, Lions;
Invent. Math. 1989], and merge with kinetic solution theory [Lions, Perthame,
Tadmor; JAMS, 1994].

Theorem (Fehrman, G.; Invent. Math. 2023)
Let g € L2, po non-negative and [ polog(po)dx < co. There is a unique weak

solution to
Oep = Dp* +V - (p*g).

The map g — p, Lf,x — L%}X, is weak-strong continuous.In particular,

= {inf{ngniz L Oip=Dpt+ V- (p°2g) ) if p/2 € L2H
|A: t,x

400 otherwise.



Gradient flow structure for the porous medium equation

DE
Fp(p)v
where M(p) corresponds to the inverse Riemannian tensor, and E is some en-
ergy/entropy.
Gradient flows for the porous medium equation:

- Brezis [71]: M = H™1, M(p) = —A, E(p) = [ p*tL.

- Otto ['01]: M = P(T?), M(p) = =V - (pV:), E(p) = [ p* pressure,

0e— N-ApNVp> ).
- “Thermodynamic metric’: M = P(T?), M(p) = =V - (p*V-),
E(p) = H(p) Boltzmann entropy,
Oep =V : (p™V log(p))-

The large deviations principle selects one of these gradient flow pictures.

Orp = Dp®™ = =V \mE(p) = —M(p)

Note: Skeleton equation & fluctuation-dissipation
Orp= Ap” -+ Vo g)
=V - (p°V log(p)) + V(> g).
—_— —

=(V-(poV )%



If we are able to write Ap® = —V \(E(p) then we have informally De Giorgi’s
Energy-Dissipation Principle

(0) =EG(T) ~ E@O) +5 [ Wl a3 [ 1871

N——
=Length of p in M

Theorem (Entropy dissipation equality, G., Heydecker, 2023)

Let p € D, H(po) < co. Then (x) is satisfied with E the Boltzmann entropy. In
the special case, where p is a solution to the PME, we have the energy equality

:
0= E(p(T)) - E(p(0)) + / 180° ()3, .
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