Fluctuations in conservative systems and SPDEs

Benjamin Gess

Universität Bielefeld & Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig

The 24th Midrasha Mathematicae, Random Schrödinger Operators and Random Matrices, May 2023

joint work with Ben Fehrman [https://arxiv.org/abs/1910.11860]
and Daniel Heydecker [https://arxiv.org/abs/2303.11289]

slides online: $BGess.de \rightarrow talks$

Content

From interacting particle systems to conservative SPDEs

From large deviations to parabolic-hyperbolic PDE with irregular drift

Parabolic-hyperbolic PDE with irregular drift

From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent particles, ...).

- State space $\mathbb{M}_N:=\mathbb{N}_0^{\mathbb{T}_N}$, i.e. configurations $\eta:\mathbb{T}_N\to\mathbb{N}_0$: System in state η if container k contains $\eta(k)$ particles.
- Local jump rate function $g: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Translation invariant, asymmetric, zero mean transition probability

$$p(k,l)=p(k-l), \quad \sum_{k} kp(k)=0.$$

- Markov jump process $\eta(t)$ on \mathbb{M}_N .
- $\eta(k,t)$ = number of particles in box k at time t.

- Hydrodynamic limit? Multi-scale dynamics

Microscopic scale: Particles

- Empirical density field: $\mu^N(x,t) := \frac{1}{N} \sum_k \delta_{\frac{k}{N}}(x) \eta(k,tN^2)$.
- [Hydrodynamic limit Ferrari, Presutti, Vares; 1987] $\mu^{N}(t) \rightharpoonup^{*} \bar{\rho}(t) dx$

with

$$\partial_t \bar{\rho} = \partial_{xx} \Phi(\bar{\rho})$$

with Φ the mean local jump rate $\Phi(
ho)=\mathbb{E}_{
u_
ho}[g(\eta(0))].$

- Loss of information:
 - ► Fluctuations, rare events / large deviations?
 - ▶ Model / Approximation error: $\mu^N = \bar{\rho} + O(N^{-\frac{1}{2}})$.

Ansatz: Conservative SPDEs

$$\partial_t \rho^N = \partial_{xx} \Phi(\rho^N) + N^{-\frac{1}{2}} \partial_x \left(\Phi^{\frac{1}{2}}(\rho^N) \xi^N \right),$$

with ξ^N noise, spatially correlated with decorrelation length $\frac{1}{N}$, and white in time, e.g. $\xi^N(t,x) = \sum^N e_k(x) \dot{\beta}_t^k$.

Informally, correct large deviations:

- Recall

$$\partial_t \rho^N = \partial_{xx} \left(\Phi(\rho^N) \right) + N^{-\frac{1}{2}} \partial_x \left(\Phi^{\frac{1}{2}}(\rho^N) \xi^N \right).$$

- Rare events: (lm-)probability to observe a fluctuation ρ :

$$\mathbb{P}[\rho^N \approx \rho] = e^{-NI(\rho)} \quad N \text{ large}$$

– Informally applying the contraction principle to the solution map

$$F: N^{-\frac{1}{2}}\xi \mapsto \rho$$

yields as a rate function

$$I(\rho) = \inf\{I_{\xi}(g): F(g) = \rho\}.$$

- Schilder's theorem for Brownian sheet suggests

$$I_{\xi}(g) = \int_0^T \int_{\mathbb{T}} |g|^2 dx dt.$$

 $- \ \mathsf{Get} \\ I(\rho) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 \, dx dt : \ \partial_t \rho = \partial_\mathsf{xx} \left(\Phi(\rho) \right) + \partial_\mathsf{x} \left(\Phi^{\frac{1}{2}}(\rho) g \right) \right\}.$

Model / Approximation error:

$$\partial_t \rho^N = \partial_{xx} \Phi(\rho^N) + \partial_x \left(\Phi^{\frac{1}{2}}(\rho^N) N^{-\frac{1}{2}} \xi^N \right).$$

Central limit theorems predict

$$\rho^{N} = \bar{\rho} + N^{-\frac{1}{2}} Y^{1} + O(N^{-1})$$

$$\mu^{N} = \bar{\rho} + N^{-\frac{1}{2}} Y^{1} + O(N^{-1}).$$

Conclude: Higher order of approximation

$$\mu^{\mathsf{N}} = \rho^{\mathsf{N}} + O(\mathsf{N}^{-1}).$$

Challenges:

- Well-posedness of conservative SPDEs (2013-): [Lions, Perthame, Souganidis; 2013, 2014], [G., Souganidis; 2015, 2017], [Fehrman, G.; 2021], [Dareiotis, G.; 2020], [Fehrman, G.; 2022].
- Large deviations: [Fehrman, G.; 2022], [Mariani, 2010]
- Expansions / quantified central limit theorems: [Dirr, Fehrman, G.; 2021],
 Linear case [Cornalba, Fischer, Ingmanns, Raithel]; [Djurdjevac, Kremp,
 Perkowski].

From large deviations to parabolic-hyperbolic PDE with irregular drift

Rare events: (Im-)probability to observe a fluctuation ρ :

$$\mathbb{P}[\mu^N \approx \mathbf{p}] = e^{-N I(\mathbf{p})} \quad N \text{ large}$$

A bit more precisely, for every open set O,

$$\mathbb{P}[\mu^N \in \bar{O}] \lesssim e^{-N \inf_{\rho \in \bar{O}} I(\rho)}$$

$$e^{-N \inf_{\rho \in O} I(\rho)} \lesssim \mathbb{P}[\mu^N \in O]$$

Zero range process

$$I(\rho) = \inf \{ \underbrace{\int_{t,x} |\partial_x H|^2 \Phi(\rho)}_{=:\|H\|_{H^1_{\Phi(\rho)}}} : \underbrace{\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi(\rho) \partial_x H)}_{\text{"controlled nonlinear Fokker-Planck equation"}} \}.$$

Theorem ([Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis, Landim; 1995])

For every open set $O \subseteq \overline{D([0,T],\mathcal{M}_+)}$ we have

$$\mathbb{P}[\mu^N \in \bar{O}] \lesssim e^{-N \inf_{\rho \in \bar{O}} I(\rho)}$$

$$\mathbb{P}[\mu^N \in \bar{O}] \lesssim e^{-N \inf_{\rho \in \bar{O}} I(\rho)}$$

$$e^{-N \inf_{\rho \in O} J(\rho)} \lesssim \mathbb{P}[\mu^N \in O]$$

where $J=\overline{I_{|A}}$ and A is the set of nice fluctuations $\mu=
ho\,\mathrm{d}x$ with ho a solution to

$$\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi(\rho) \partial_x H)$$

for some $H \in C^{1,3}_{t,x}$.

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation [Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020]. Counter-examples for Boltzmann [Heydecker; 2021].

Problem:

$$I=J=\overline{I_{|A}}$$
?

Existence of a "recovery sequence"? Given fluctuation ρ so that $I(\rho dx) < \infty$, i.e. for some $H \in H^1_{\Phi(\rho)}$,

$$\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi(\rho) \partial_x \underbrace{H}_{\in H^1_{\Phi(\rho)}}).$$

Need to find sequence of nice fluctuations $\rho^{\varepsilon} \in A$ so that $\rho^{\varepsilon} \to \rho$ and $I(\rho^{\varepsilon}) \to I(\rho)$. That is, find $H^{\varepsilon} \in C^{1,3}([0,T] \times \mathbb{T})$ so that

$$I(\rho^{\varepsilon}) = \|H^{\varepsilon}\|_{L^{2}_{t}H^{1}_{\Phi(\rho)}} \to \|H\|_{L^{2}_{t}H^{1}_{\Phi(\rho)}} = I(\rho)$$

and

$$\partial_t \rho^{\varepsilon} = \partial_{xx} \Phi(\rho^{\varepsilon}) + \partial_x (\Phi(\rho^{\varepsilon}) \partial_x H^{\varepsilon})$$

satisfies $\rho^{\varepsilon} \to \rho$.

Difficult: Open problem for the zero range process since [Benois, Kipnis, Landim; 1995].

Recall: Informally the LDP expected from

$$\partial_t \rho = \partial_{xx} \Phi(\rho) + N^{-\frac{1}{2}} \partial_x (\Phi^{\frac{1}{2}}(\rho) \xi^N)$$

is

$$I(\rho) = \inf \{ \int_0^T \int_{\mathbb{T}} |g|^2 \, dx dt \, : \underbrace{\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho)g)}_{\text{"skeleton equation"}} \}.$$

Observation: Stability properties are better studied via the skeleton PDE

$$\begin{split} \partial_{t}\rho &= \partial_{xx}\Phi(\rho) + \partial_{x}(\Phi(\rho)\partial_{x}H) \\ &= \partial_{xx}\Phi(\rho) + \partial_{x}(\Phi^{\frac{1}{2}}(\rho)\underbrace{\Phi^{\frac{1}{2}}(\rho)\partial_{x}H}_{L_{t,x}^{2}}) \\ &= \underbrace{\partial_{xx}\Phi(\rho) + \partial_{x}(\Phi^{\frac{1}{2}}(\rho)\underbrace{g}_{g})}_{\text{"skeleton equation"}} \end{split}$$

Stability: $g \mapsto \rho$, $L_{t \times}^2 \to L_{t \times}^1$ continuous?

Le. Stability and uniqueness of a PDE with irregular coefficients $g \in L^2_{t \times t}$

Eventually it turns out that stability is studied better on the level of the skeleton equation than on the level of the nonlinear Fokker-Planck equation.

Parabolic-hyperbolic PDE with irregular drift

Skeleton equation

$$\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho) \underbrace{g}_{\in L^2_{t,x}}).$$

How difficult is the well-posedness?

- Difficulty: Stable a-priori bound? L^p framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation

- We consider, $\Phi(\rho) = \rho^m$,

$$\partial_t \rho = \Delta \rho^m + \operatorname{div}(\rho^{\frac{m}{2}}g)$$

with $g \in L^q_t L^p_x$ and $\rho_0 \in L^r_x$.

- Via rescaling ("zooming in"):

ightharpoonup p = q = 2 is critical.

ightharpoonup r = 1 is critical, r > 1 is supercritical.

Recall: [Le Bris, Lions; CPDE 2008], [Karlssen, Risebro, Ohlberger, Chen, ...]

$$\partial_t \rho = \frac{1}{2} D^2 : (\sigma \sigma^* \, \rho) + \operatorname{div}(\rho \, g)$$

needs $g \in W^{1,1}_{loc,x}$, div $g \in L^{\infty}$.

Overview of ingredients of the proof:

- Part 1: Apriori-bounds; entropy-entropy dissipation estimates
- Part 2: Extending the concepts of DiPerna-Lions, Ambrosio, Le Bris-Lions to nonlinear PDE (but going beyond).
- Part 3: Uniqueness for renormalized entropy solutions (variable doubling):
 New treatment of kinetic dissipation measure. Exploit finite singular moments.

Part 1: Apriori-bounds

Consider

$$\partial_t
ho = \Delta
ho^m + \operatorname{div}(
ho^{rac{m}{2}} g) \quad ext{on } \mathbb{R}_+ imes \mathbb{T}^d$$

with $g \in L^2_{t,x}$, $m \in [1, \infty)$. E.g.

$$\partial_t \rho = \Delta \rho + \operatorname{div}(\rho^{\frac{1}{2}}g).$$

- Use entropy-entropy dissipation: Evolution of entropy given by $\int_{\mathbb{T}^d} \log(\rho) \rho$. Informally gives

$$\int_{x} \log(\rho) \rho \, \big|_0^t + \int_0^t \int_{x} (\nabla \rho^{\frac{m}{2}})^2 \lesssim \int_0^t \int_{x} g^2.$$

- Caution: Can only be true for non-negative solutions.
- Non-standard weak solutions, rewriting (*) as

$$\partial_t \rho = 2 \operatorname{div}(\rho^{\frac{m}{2}} \nabla \rho^{\frac{m}{2}}) + \operatorname{div}(\rho^{\frac{m}{2}} g).$$

- Stability in the control: for $g^{\varepsilon} \rightharpoonup g$ in $L^2_{t,x}$ by compactness $\rho^{\varepsilon} \to \hat{\rho}$ weak solution to (*).
- Conclusion: Have to prove uniqueness within this class of solutions.

Part 2: Renormalization

Recall: Linear case [DiPerna, Lions, Invent. 1989; Ambrosio Invent. 2004]

$$\partial_t \rho = \operatorname{div}(\rho g).$$

Then ρ is a renormalized solution, if for all smooth f we have

$$\partial_t f(\rho) = \operatorname{div}(f(\rho)g) - (f(\rho) + f'(\rho)\rho)\operatorname{div}g.$$

Let ρ be a weak solution to

$$\partial_t \rho = 2 \mathsf{div}(\rho^{\frac{m}{2}} \nabla \rho^{\frac{m}{2}}) + \mathsf{div}(\rho^{\frac{m}{2}} g).$$

Show that every weak solution is a renormalized (= kinetic) solution (merging renormalization [DiPerna, Lions; Ambrosio] with kinetic solutions [Lions, Perthame, Tadmor, J. Amer. Math. Soc. 1994]).

Let

$$\chi(t,x,\xi) = f_{\xi}(\rho(x,t)) = 1_{0 < \xi < \rho(x,t)} - 1_{\rho(x,t) < \xi < 0}.$$

Then, informally,

$$\partial_t \chi = m \xi^{m-1} \Delta_x \chi - g(x,t) (\partial_\xi \xi^{\frac{m}{2}}) \nabla_x \chi + (\nabla_x g(x,t)) \xi^{\frac{m}{2}} \partial_\xi \chi + \partial_\xi q$$

with p parabolic defect measure

$$q = \delta(\xi - \rho(x, t)) |\nabla \rho^{\frac{m+1}{2}}|^2.$$

- Note: Additional commutator errors by commuting convolution and nonlinearities.
- Commutator estimate using non-standard (optimal) regularity $ho^{rac{m}{2}}\in L^2_t\dot{H}^1_x$
- Additional renormalization step to compensate low time integrability $ho^{\frac{m}{2}}g\in L^1_tL^1_x$.

Theorem

A function $ho \in \mathsf{L}^\infty_t \mathsf{L}^1_x$ is a weak solution to

$$\partial_{\mathsf{t}}
ho = 2 \mathit{div}(
ho^{rac{m}{2}}
abla
ho^{rac{m}{2}}) + \mathit{div}(
ho^{rac{m}{2}} \mathsf{g})$$

if and only if ρ is a renormalized entropy solution (kinetic solution).

Part 3: Uniqueness for renormalized entropy solutions (variable doubling)

- Established arguments [Chen, Perthame; 2003] not applicable.
- Additional errors from space-inhomogeneity (with little regularity)
- Note: Entropy dissipation measure

$$q(x,\xi,t) = \delta(\xi - \rho(x,t)) |\nabla \rho^{\frac{m+1}{2}}|^2 = \delta(\xi - \rho(x,t)) \frac{\xi^m}{\xi^{m-1}} |\nabla \rho^{\frac{m}{2}}|^2$$

does not satisfy

$$\lim_{|\xi|\to\infty}\int_{t,x}q(x,\xi,t)\,dxdt=0.$$

- Only finite singular moment

$$\int_{t,x,\xi} |\xi|^{-1} q(x,\xi,t) \, d\xi dx dt < \infty.$$

Theorem (The skeleton equation, Fehrman, G. 2022)

Let $g \in L^2_{t,x}$, ρ_0 non-negative and $\int \rho_0 \log(\rho_0) dx < \infty$. There is a unique weak solution to

$$\partial_t \rho = \Delta \Phi(\rho) + div(\Phi^{\frac{1}{2}}(\rho)g).$$

The map $g \mapsto \rho$, $L^2_{t,x} \to L^1_{t,x}$, is weak-strong continuous. E.g. including all $\Phi(\rho) = \rho^m$, $m \in [1, \infty)$.

Theorem (LDP for zero range process, G., Heydecker, 2023)

The rescaled zero range process satisfies the <u>full</u> large deviations principle with rate function

$$I(\rho) = \|\partial_t \rho - \partial_{xx} \Phi(\rho)\|_{H^{-1}_{\Phi(\rho)}}.$$

References

- B. Fehrman and B. Gess.

 Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift.

 arXiv:1910.11860 [math], Mar. 2022.
- B. Gess and D. Heydecker.

 A Rescaled Zero-Range Process for the Porous Medium Equation: Hydrodynamic Limit,
 Large Deviations and Gradient Flow, Mar. 2023.

Advertisement: Two open PostDoc positions at Bielefeld University (CRC 1283, and ERC CoG "FluCo") in stochastic analysis, in particular,

- stochastic PDEs
- non-equilibrium statistical mechanics
- mathematics of machine learning
- stochastic dynamics.

Construction of the recovery sequence ρ^n with smooth controls H^n : Recall

$$\begin{split} \partial_t \rho &= \partial_{xx} \Phi(\rho) + \partial_x (\Phi(\rho) \partial_x H) \\ &= \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho) \underbrace{\Phi^{\frac{1}{2}}(\rho) \partial_x H}). \\ g_n &= g * \kappa^{\frac{1}{n}}, \ \rho_{0,n} = ((\rho_0 \vee \frac{1}{n}) \wedge n)^g * \kappa^{\frac{1}{n}} \\ \psi_n &= 0 \text{ on } [0, \frac{1}{2n}] \cup [2n, \infty) \ \psi_n = 1 \text{ on } [\frac{1}{n}, n] \end{split}$$

Let ρ_n be the solution to

$$\partial_t \rho_n = \Delta \Phi(\rho_n) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho_n) \psi(\rho_n) g_n).$$

By comparison get

Let

$$1/2n \leq \rho_n \leq 2n,$$

by parabolic regularity get ρ^n smooth. Consider the equation

$$\partial_t \rho_n = \Delta \Phi(\rho_n) - \nabla \cdot (\Phi(\rho_n) \nabla H_n)$$

as a (non-degenerate) elliptic equation for H_n . We get existence of a smooth H_n and thus ρ^n is a nice fluctuation.

The entropy dissipation estimate for ρ_n is still applicable since $\|\psi(\rho_n)g_n\|_{L^2} \le \|g\|_{L^2}$. This allows to show convergence to a solution ρ , which by uniqueness is the pre-given function ρ .