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From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent par-
ticles, ..).
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- State space My := NE’V, i.e. configurations 7 : Ty — Ng : System in state
n if container k contains 7(k) particles.
- Local jump rate function g : Ng — Ry

Translation invariant, asymmetric, zero mean transition probability

p(k,1) = p(k — 1), ka(k)zo.

Markov jump process 7(t) on M.
- n(k,t) = number of particles in box k at time t.



- Hydrodynamic limit? Multi-scale dynamics

Microscopic scale: Particles Macroscopic scale: PDEs
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- Empirical density field: x"V(x,t) := &>, dx (x)n(k, tN?).
- [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
pM () =" p(t) dx
with
ep = Bu®(p)

with ® the mean local jump rate ®(p) = E, [g(1(0))].
- Loss of information:
» Fluctuations, rare events / large deviations?
» Model / Approximation error: u" = 5+ O(N*%).



Fluctuating Hydrodynamics?

Microscopic scale: Particles Macroscopic scale: PDEs
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Gridsize = ~ Mean dynamics
Microscopic scale: Particles Mesoscopic scale: Conservative Macroscopic scale: PDEs
SPDEs
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Gridsize = % Fluctuation correction Mean dynamics

Ansatz: Conservative SPDEs

Dep" = (o) + N0, (@R (M)
with ¢V noise, spatially correlated with decorrelation length %, and white in time,

egtV(t,x) = X" en(x)BE



Informally, correct large deviations:
- Recall

Bup™ = B (P(p")) + N~H0, (@3 (pM)e").
- Rare events: (Im-)probability to observe a fluctuation p:

PpN ~ |=e V) N large
Informally applying the contraction principle to the solution map
F:N%¢sp

yields as a rate function
I(p) = inf{le(g) : F(g)=p}

Schilder's theorem for Brownian sheet suggests

-
k(g) = / / g die.
0 T

- Get A
I(p) = inf{/o /T\gIdedt: 9p = Ox (P(p)) + Ox (¢§(p)g)}-



Model / Approximation error:
Dep = (o) + 0 (PH(PMINEEN)
Central limit theorems predict

PV =p+N2YL 4+ O(ND)
wN=p+N"IY L O(NTD).

Conclude: Higher order of approximation

p = p" + O(NTY).

Challenges:

- Well-posedness of conservative SPDEs (2013-): [Lions, Perthame,
Souganidis; 2013, 2014], [G., Souganidis; 2015, 2017], [Fehrman, G.; 2021],
[Dareiotis, G.; 2020], [Fehrman, G.; 2022].

- Large deviations: [Fehrman, G.; 2022], [Mariani, 2010]

- Expansions / quantified central limit theorems: [Dirr, Fehrman, G.; 2021],

Linear case [Cornalba, Fischer, Ingmanns, Raithel]; [Djurdjevac, Kremp,
Perkowski].



From large deviations to parabolic-hyperbolic PDE with irregular drift

Rare events: (Im-)probability to observe a fluctuation p:
Plu’ ~ ]=eN) N large
A bit more precisely, for every open set O,
PN € O] < eV infoco (o)
e=Ninfoco 1) <p[,N € O]
Zero range process

o) =inf{ | 10HPO() :  0up = Bo(p) + O(G(OH) ).

N— ———"controlled nonlinear Fokker-Planck equation"
=:[|H[| 2
Ho()




Theorem ([Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis,
Landim; 1995])
For every open set O C D([0, T], M) we have

IP)[,UN c é] S e—N inf,co/(p)

Blu" €/0] = e Macoiia)
e Ninfoeo J(p) S/]P’['u,N € 0]

where J = |4 and A is the set of nice fluctuations ju = p dx with p a solution to
9ep = O0xx®(p) + Ox(P(p)0xH)
for some H € C12.

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation

[Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020].
Counter-examples for Boltzmann [Heydecker; 2021].



Problem: =
I=J=1,7

Existence of a “recovery sequence? Given fluctuation p so that /(pdx) < oo, i.e.
for some H € H$(p),

Orp = O P(p) + Ox(P(p)0x ).

H
~—
GHé(p)

Need to find sequence of nice fluctuations p° € A so that p° — p and /(p°) —
I(p). Thatis, find H® € C13([0, T] x T) so that

/(pf) RiZ HH&HL%H;U,) iy ||H||L$Hé( E= I(p)

p)

and
0:p° = 0 ®(p%) + Ox(P(p") 0 H?)

satisfies p° — p.

Difficult: Open problem for the zero range process since [Benois, Kipnis, Landim;
1995].



Recall: Informally the LDP expected from

ep = O ®(p) + N2 (93 (p)E")

I(p) = inf{/o /T lg|? dxdt : Orp = D ®(p) + 6X(¢%(p)g)}.

"skeleton equation"

Observation: Stability properties are better studied via the skeleton PDE
Op = aqu)(p) ar 8X(¢(p)8XH)
= 0 ®(p) + 0x(3 (p) ©2 ()0, H)
s
€Lz, |
= 0u®(p) + 0x(®3(0) &)

"skeleton equation"

Stability: g — p, L7, — L}, continuous?
|.e. Stability and uniqueness of a PDE with irregular coefficients g € Lf’x.

Eventually it turns out that stability is studied better on the level of the skeleton
equation than on the level of the nonlinear Fokker-Planck equation.



Parabolic-hyperbolic PDE with irregular drift

Skeleton equation

Bep = 0 ®(p) + 0x(P2(p) g ).
~—
elL?

o

How difficult is the well-posedness?
- Difficulty: Stable a-priori bound? LP framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation
- We consider, ®(p) = p™,

dep = Dp™ +div(p2 g)

with g € L{LP and pg € L..
- Via rescaling (“zooming in"):
» p=qg=2is critical.
» r =1 s critical, r > 1 is supercritical.

Recall: [Le Bris, Lions; CPDE 2008], [Karlssen, Risebro, Ohlberger, Chen, ..]
1
Op = §D2 (00" p) +div(pg)

needs g € wt!

loc.x!

divg € L.



Overview of ingredients of the proof:

- Part 1: Apriori-bounds; entropy-entropy dissipation estimates
- Part 2: Extending the concepts of DiPerna-Lions, Ambrosio, Le Bris-Lions
to nonlinear PDE (but going beyond).

- Part 3: Uniqueness for renormalized entropy solutions (variable doubling):
New treatment of kinetic dissipation measure. Exploit finite singular
moments.



Part 1: Apriori-bounds

- Consider
dip = Ap™ +div(pTg) on R, x T¢ *)

with g € L2, m € [1,00). E.g.
Bep = Ap +div(pig).

- Use entropy-entropy dissipation: Evolution of entropy given by [1., log(p)p.

Informally gives
o t = t
Jroeols+ [ [ootrs [ [ e

- Caution: Can only be true for non-negative solutions.
- Non-standard weak solutions, rewriting () as

Oep = 2div(p2 Vp?) + div(p? g).

- Stability in the control: for g& — g in L%X by compactness p° — p weak
solution to ().
- Conclusion: Have to prove uniqueness within this class of solutions.



Part 2: Renormalization
Recall: Linear case [DiPerna, Lions, Invent. 1989; Ambrosio Invent. 2004]
9ep = div(pg).

Then p is a renormalized solution, if for all smooth f we have

9:f(p) = div(f(p)g) — (f(p) + f'(p)p)divg.

Let p be a weak solution to
dep = 2div(p= Vp2 ) +div(p2 g).

Show that every weak solution is a renormalized (= kinetic) solution

(merging renormalization [DiPerna, Lions; Ambrosio] with kinetic solutions [Lions,
Perthame, Tadmor, J. Amer. Math. Soc. 1994]).

Let

X(t,ng) = fg(p(X, t)) = 10<£<p(x,t) e 1p(x,t)<£<0'
Then, informally,
Bex = mETTHAX — g(x, 1)(BeE 2 )Vax + (Vxg(x, 1))E2 ex + eq

with p parabolic defect measure
m+1
q=08(¢ = p(x,t))[Vp= |



- Note: Additional commutator errors by commuting convolution and nonlin-
earities.
- Commutator estimate using non-standard (optimal) regularity p? € L2H!

- Additional renormalization step to compensate low time integrability p2 g €
o /Lo

Theorem
A function p € L2°L} is a weak solution to
Oep = 2div(p? Vp?) + div(p? g)

if and only if p is a renormalized entropy solution (kinetic solution).



Part 3: Uniqueness for renormalized entropy solutions (variable doubling)
- Established arguments [Chen, Perthame; 2003] not applicable.
- Additional errors from space-inhomogeneity (with little regularity)
- Note: Entropy dissipation measure

m

.6, 2) = 86 = e, DIV "E 2 = 86 — plx ) g IV F

does not satisfy
lim / q(x, &, t) dxdt = 0.
t,x

|§]—o00

- Only finite singular moment

/ €7 q(x, &, t) dédxdt < co.
t,x,&

%)



Theorem (The skeleton equation, Fehrman, G. 2022)
Let g € L2, po non-negative and [ polog(po)dx < oo. There is a unique weak

t,x’
solution to

Dep = DD(p) + div(®3 (p)g).

The map g — p, L3, — L}, is weak-strong continuous. E.g. including all

®(p) = p™, m € [1,00).

Theorem (LDP for zero range process, G., Heydecker, 2023)

The rescaled zero range process satisfies the full large deviations principle with
rate function

I(p) = 10ep — @xx¢(p)||H;(;)-
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Construction of the recovery sequence p” with smooth controls H": Recall
9ep = 0 ®(p) + Ox(®(p)OxH)
= 0 ®(p) + 0x(P2(p) D2 () H).
——
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Let p, be the solution to
Oepn = BB(p) = V- (©% (pr) i (p1)gin)-

By comparison get
1/2n < p, < 2n,
by parabolic regularity get p"” smooth. Consider the equation
Otpn = AP(p,) — V - (P(pn)VH,)

as a (non-degenerate) elliptic equation for H,. We get existence of a smooth H,
and thus p" is a nice fluctuation.

The entropy dissipation estimate for p, is still applicable since ||¥(pn)gnlliz <
|lgllz2- This allows to show convergence to a solution p, which by uniqueness is
the pre-given function p.
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