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From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent par-
ticles, ..).

- State space MN := NTN
0
, i.e. con�gurations η : TN → N0 : System in state

η if container k contains η(k) particles.

- Local jump rate function g : N0 → R+
0
.

- Translation invariant, asymmetric, zero mean transition probability

p(k, l) = p(k − l),
∑
k

kp(k) = 0.

- Markov jump process η(t) on MN .

- η(k, t) = number of particles in box k at time t.



- Hydrodynamic limit? Multi-scale dynamics

- Empirical density �eld: µN(x , t) := 1

N

∑
k δ k

N
(x)η(k , tN2).

- [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]

µN(t) ⇀∗ ρ̄(t) dx

with

∂t ρ̄ = ∂xxΦ(ρ̄)

with Φ the mean local jump rate Φ(ρ) = Eνρ [g(η(0))].

- Loss of information:
I Fluctuations, rare events / large deviations?
I Model / Approximation error: µN = ρ̄+ O(N− 1

2 ).



Fluctuating Hydrodynamics?

Ansatz: Conservative SPDEs

∂tρ
N = ∂xxΦ(ρN) + N−

1

2 ∂x

(
Φ

1

2 (ρN)ξN
)
,

with ξN noise, spatially correlated with decorrelation length 1

N , and white in time,

e.g.ξN(t, x) =
∑N ek(x)β̇k

t .

Informal justi�cation:
1. Physics: Fluctuation-dissipation relation, Fluctuating Wasserstein gradient
�ow, ∞-dim Fokker-Planck equations
2. Law of large numbers, central limit �uctuations & correct large deviations



Informally, correct large deviations:

- Recall
∂tρ

N = ∂xx
(
Φ(ρN)

)
+ N−

1

2 ∂x

(
Φ

1

2 (ρN)ξN
)
.

- Rare events: (Im-)probability to observe a �uctuation ρ:

P[ρN ≈ ρ] = e−N I (ρ) N large

- Informally applying the contraction principle to the solution map

F : N−
1

2 ξ 7→ ρ

yields as a rate function

I (ρ) = inf{Iξ(g) : F (g) = ρ}.

- Schilder's theorem for Brownian sheet suggests

Iξ(g) =

∫ T

0

∫
T
|g |2 dxdt.

- Get

I (ρ) = inf

{∫ T

0

∫
T
|g |2 dxdt : ∂tρ = ∂xx (Φ(ρ)) + ∂x

(
Φ

1

2 (ρ)g
)}

.



Model / Approximation error:

∂tρ
N = ∂xxΦ(ρN) + ∂x

(
Φ

1

2 (ρN)N−
1

2 ξN
)
.

Central limit theorems predict

ρN = ρ̄+ N−
1

2Y 1 + O(N−1)

µN = ρ̄+ N−
1

2Y 1 + O(N−1).

Conclude: Higher order of approximation

µN = ρN + O(N−1).

Challenges:

- Well-posedness of conservative SPDEs (2013�): [Lions, Perthame,

Souganidis; 2013, 2014], [G., Souganidis; 2015, 2017], [Fehrman, G.; 2021],

[Dareiotis, G.; 2020], [Fehrman, G.; 2022].

- Large deviations: [Fehrman, G.; 2022], [Mariani, 2010]

- Expansions / quanti�ed central limit theorems: [Dirr, Fehrman, G.; 2021],

Linear case [Cornalba, Fischer, Ingmanns, Raithel]; [Djurdjevac, Kremp,

Perkowski].



From large deviations to parabolic-hyperbolic PDE with irregular drift

Rare events: (Im-)probability to observe a �uctuation ρ:

P[µN ≈ ρ] = e−N I (ρ) N large

A bit more precisely, for every open set O,

P[µN ∈ Ō] . e−N infρ∈Ō I (ρ)

e−N infρ∈O I (ρ) .P[µN ∈ O]

Zero range process

I (ρ) = inf{
∫
t,x

|∂xH|2Φ(ρ)︸ ︷︷ ︸
=:‖H‖H1

Φ(ρ)

: ∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)∂xH)︸ ︷︷ ︸
"controlled nonlinear Fokker-Planck equation"

}.



Theorem ([Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis,
Landim; 1995])

For every open set O ⊆ D([0,T ],M+) we have

P[µN ∈ Ō] . e−N infρ∈Ō I (ρ)

P[µN ∈ Ō] . e−N infρ∈Ō I (ρ)

e−N infρ∈O J(ρ) .P[µN ∈ O]

where J = I|A and A is the set of nice �uctuations µ = ρ dx with ρ a solution to

∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)∂xH)

for some H ∈ C 1,3
t,x .

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation

[Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020].
Counter-examples for Boltzmann [Heydecker; 2021].



Problem:
I = J = I|A ?

Existence of a �recovery sequence�? Given �uctuation ρ so that I (ρdx) <∞, i.e.
for some H ∈ H1

Φ(ρ),

∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)∂x H︸︷︷︸
∈H1

Φ(ρ)

).

Need to �nd sequence of nice �uctuations ρε ∈ A so that ρε → ρ and I (ρε) →
I (ρ). That is, �nd Hε ∈ C 1,3([0,T ]× T) so that

I (ρε) = ‖Hε‖L2t H1

Φ(ρ)
→ ‖H‖L2t H1

Φ(ρ)
= I (ρ)

and
∂tρ

ε = ∂xxΦ(ρε) + ∂x(Φ(ρε)∂xH
ε)

satis�es ρε → ρ.

Di�cult: Open problem for the zero range process since [Benois, Kipnis, Landim;

1995].



Recall: Informally the LDP expected from

∂tρ = ∂xxΦ(ρ) + N−
1

2 ∂x(Φ
1

2 (ρ)ξN)

is

I (ρ) = inf{
∫ T

0

∫
T
|g |2 dxdt : ∂tρ = ∂xxΦ(ρ) + ∂x(Φ

1

2 (ρ)g)︸ ︷︷ ︸
"skeleton equation"

}.

Observation: Stability properties are better studied via the skeleton PDE

∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)∂xH)

= ∂xxΦ(ρ) + ∂x(Φ
1

2 (ρ) Φ
1

2 (ρ)∂xH︸ ︷︷ ︸
L2t,x

)

= ∂xxΦ(ρ) + ∂x(Φ
1

2 (ρ)

∈L2t,x︷︸︸︷
g )︸ ︷︷ ︸

"skeleton equation"

Stability: g 7→ ρ, L2t,x → L1t,x continuous?

I.e. Stability and uniqueness of a PDE with irregular coe�cients g ∈ L2t,x .

Eventually it turns out that stability is studied better on the level of the skeleton
equation than on the level of the nonlinear Fokker-Planck equation.



Parabolic-hyperbolic PDE with irregular drift

Skeleton equation

∂tρ = ∂xxΦ(ρ) + ∂x(Φ
1

2 (ρ) g︸︷︷︸
∈L2t,x

).

How di�cult is the well-posedness?

- Di�culty: Stable a-priori bound? Lp framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation

- We consider, Φ(ρ) = ρm,

∂tρ = ∆ρm + div(ρ
m
2 g)

with g ∈ Lqt L
p
x and ρ0 ∈ Lrx .

- Via rescaling (�zooming in�):
I p = q = 2 is critical.
I r = 1 is critical, r > 1 is supercritical.

Recall: [Le Bris, Lions; CPDE 2008], [Karlssen, Risebro, Ohlberger, Chen, ...]

∂tρ =
1

2
D2 : (σσ∗ ρ) + div(ρ g)

needs g ∈W 1,1
loc,x , div g ∈ L∞.



Overview of ingredients of the proof:

- Part 1: Apriori-bounds; entropy-entropy dissipation estimates

- Part 2: Extending the concepts of DiPerna-Lions, Ambrosio, Le Bris-Lions
to nonlinear PDE (but going beyond).

- Part 3: Uniqueness for renormalized entropy solutions (variable doubling):
New treatment of kinetic dissipation measure. Exploit �nite singular
moments.



Part 1: Apriori-bounds

- Consider
∂tρ = ∆ρm + div(ρ

m
2 g) on R+ × Td (*)

with g ∈ L2t,x , m ∈ [1,∞). E.g.

∂tρ = ∆ρ+ div(ρ
1

2 g).

- Use entropy-entropy dissipation: Evolution of entropy given by
∫
Td log(ρ)ρ.

Informally gives ∫
x

log(ρ)ρ
∣∣t
0

+

∫ t

0

∫
x

(∇ρm
2 )2 .

∫ t

0

∫
x

g2.

- Caution: Can only be true for non-negative solutions.

- Non-standard weak solutions, rewriting (∗) as

∂tρ = 2div(ρ
m
2∇ρm

2 ) + div(ρ
m
2 g).

- Stability in the control: for gε ⇀ g in L2t,x by compactness ρε → ρ̂ weak
solution to (∗).

- Conclusion: Have to prove uniqueness within this class of solutions.



Part 2: Renormalization

Recall: Linear case [DiPerna, Lions, Invent. 1989; Ambrosio Invent. 2004]

∂tρ = div(ρg).

Then ρ is a renormalized solution, if for all smooth f we have

∂t f (ρ) = div(f (ρ)g)− (f (ρ) + f ′(ρ)ρ)divg .

Let ρ be a weak solution to

∂tρ = 2div(ρ
m
2∇ρm

2 ) + div(ρ
m
2 g).

Show that every weak solution is a renormalized (= kinetic) solution
(merging renormalization [DiPerna, Lions; Ambrosio] with kinetic solutions [Lions,

Perthame, Tadmor, J. Amer. Math. Soc. 1994]).
Let

χ(t, x , ξ) = fξ(ρ(x , t)) = 10<ξ<ρ(x,t) − 1ρ(x,t)<ξ<0.

Then, informally,

∂tχ = mξm−1∆xχ− g(x , t)(∂ξξ
m
2 )∇xχ+ (∇xg(x , t))ξ

m
2 ∂ξχ+ ∂ξq

with p parabolic defect measure

q = δ(ξ − ρ(x , t))|∇ρ
m+1
2 |2.



- Note: Additional commutator errors by commuting convolution and nonlin-
earities.

- Commutator estimate using non-standard (optimal) regularity ρ
m
2 ∈ L2t Ḣ

1
x

- Additional renormalization step to compensate low time integrability ρ
m
2 g ∈

L1t L
1

x .

Theorem
A function ρ ∈ L∞t L1x is a weak solution to

∂tρ = 2div(ρ
m
2∇ρm

2 ) + div(ρ
m
2 g)

if and only if ρ is a renormalized entropy solution (kinetic solution).



Part 3: Uniqueness for renormalized entropy solutions (variable doubling)

- Established arguments [Chen, Perthame; 2003] not applicable.

- Additional errors from space-inhomogeneity (with little regularity)

- Note: Entropy dissipation measure

q(x , ξ, t) = δ(ξ − ρ(x , t))|∇ρ
m+1
2 |2 = δ(ξ − ρ(x , t))

ξm

ξm−1
|∇ρm

2 |2

does not satisfy

lim
|ξ|→∞

∫
t,x

q(x , ξ, t) dxdt = 0.

- Only �nite singular moment∫
t,x,ξ

|ξ|−1q(x , ξ, t) dξdxdt <∞.



Theorem (The skeleton equation, Fehrman, G. 2022)
Let g ∈ L2t,x , ρ0 non-negative and

∫
ρ0 log(ρ0)dx <∞. There is a unique weak

solution to
∂tρ = ∆Φ(ρ) + div(Φ

1

2 (ρ)g).

The map g 7→ ρ, L2t,x → L1t,x , is weak-strong continuous. E.g. including all
Φ(ρ) = ρm, m ∈ [1,∞).

Theorem (LDP for zero range process, G., Heydecker, 2023)
The rescaled zero range process satis�es the full large deviations principle with
rate function

I (ρ) = ‖∂tρ− ∂xxΦ(ρ)‖H−1
Φ(ρ)
.
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Construction of the recovery sequence ρn with smooth controls Hn: Recall

∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)∂xH)

= ∂xxΦ(ρ) + ∂x(Φ
1

2 (ρ) Φ
1

2 (ρ)∂xH︸ ︷︷ ︸
g

).

Let
gn = g ∗ κ 1

n , ρ0,n = ((ρ0 ∨
1

n
) ∧ n) ∗ κ 1

n

ψn = 0 on [0,
1

2n
] ∪ [2n,∞) ψn = 1 on [

1

n
, n]

Let ρn be the solution to

∂tρn = ∆Φ(ρn)−∇ · (Φ
1

2 (ρn)ψ(ρn)gn).

By comparison get
1/2n ≤ ρn ≤ 2n,

by parabolic regularity get ρn smooth. Consider the equation

∂tρn = ∆Φ(ρn)−∇ · (Φ(ρn)∇Hn)

as a (non-degenerate) elliptic equation for Hn. We get existence of a smooth Hn

and thus ρn is a nice �uctuation.
The entropy dissipation estimate for ρn is still applicable since ‖ψ(ρn)gn‖L2 ≤
‖g‖L2 . This allows to show convergence to a solution ρ, which by uniqueness is
the pre-given function ρ.
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