Path-by-path regularization by noise for stochastic scalar conservation laws

Benjamin Gess Max Planck Institute for Mathematics in the Sciences, Leipzig & Universität Bielefeld

Japanese-German Open Conference on Stochastic Analysis 2017 TU Kaiserslautern

joint work with: Panagiotis E. Souganidis, Khalil Chouk [G., Souganidis; CPAM, 2016], [Chouk, G.; arXiv]

Consider

$$\partial_t u + \operatorname{div} A(u) = 0, \quad \text{on } (0, T) \times \mathbb{R}^d$$

 $u(0) = u_0 \in L^{\infty}(\mathbb{R}^d).$

For

$$\chi(t,x,v) = \chi(u(t,x),v) = 1_{v < u(t,x)} - 1_{v < 0}$$

we get the kinetic form

$$\partial_t \chi + A'(v) \cdot \nabla \chi = \partial_v m$$
 on $(0, T) imes \mathbb{R}^d imes \mathbb{R}$.

Dissipation-dispersion approximations lead to

Definition (De Lellis, Otto, Westdickenberg, 2003)

A function $u \in L^{\infty}([0, T] \times \mathbb{R}^d)$ is said to be a quasi-solution if $\chi(t, x, v) = \chi(u(t, x), v)$ satisfies

$$\partial_t \chi + A'(v) \cdot \nabla \chi = \partial_v m$$
 on $(0, T) imes \mathbb{R}^d imes \mathbb{R}$

for some finite (signed) measure m.

 (\star)

Theorem (De Lellis, Westdickenberg, 2003; Jabin, Perthame 2002) *Consider*

$$\partial_t u + rac{1}{2} \partial_x u^2 = 0, \quad on \ (0,T) imes \mathbb{R}.$$

Then

Solution satisfies, for all $\lambda \in (0, \frac{1}{3})$,

$$u \in L^1([0,T]; W^{\lambda,1}(\mathbb{R})).$$

Por each λ > ¹/₃ there exists a quasi-solution u, such that u is a weak solution and u ∉ L¹([0, T]; W^{λ,1}(ℝ)).

Regularity of solutions to stochastic SCL

• Consider mean field equations

$$dX_t^i = \sigma^L \left(X_t^i, \frac{1}{L} \sum_{j=1}^L \delta_{X_t^j} \right) \circ d\beta_t \quad \text{in } \mathbb{R}^N$$

Taking $L
ightarrow \infty$ and $\sigma^L
ightarrow \sigma$ leads to stochastic scalar conservation laws

$$d\pi + \operatorname{div}(\underbrace{\sigma(x,\pi)\pi}_{=:\mathcal{A}(x,\pi)} \circ d\beta) = 0 \quad ext{on } (0,T) imes \mathbb{R}^d.$$

• Consider the case of A spatially homogeneous and truly nonlinear: i.e. there exist $\theta \in (0,1]$ and C > 0 such that, for all $\sigma \in S^{d-1}$, $z \in \mathbb{R}^d$ and $\varepsilon > 0$,

$$|\{v \in \mathbb{R} : |A'(v)\sigma - z| \leq \varepsilon\}| \leq C\varepsilon^{\theta}.$$

e.g. $A(u) = \frac{u^{l+1}}{l+1}$, then $\theta = \frac{1}{l}$, $l \ge 1$.

• For simplicity in this talk restrict to

$$du+\frac{1}{2}\partial_{x}u^{2}\circ d\beta_{t}=0.$$

Benjamin Gess

Regularization by noise for SCL

Theorem (G., Souganidis; CPAM, 2016) Let $u \in L^{\infty}$ be a quasi-solution to

$$du + rac{1}{2}\partial_x u^2 \circ deta_t = 0 \quad on \ \mathbb{T}.$$

Then,

$$u \in L^1_t W^{\lambda,1}_x$$
 for all $\lambda \in (0, \frac{1}{2}), \mathbb{P}$ -a.s..

If u is an entropy solution, then

$$u(t)\in W^{\lambda,1}_x$$
 for all $t>0,\,\lambda\in(0,rac{1}{2}),\,\mathbb{P}$ -a.s.. (*)

Two resulting questions:

- Can the zero set in (\star) be chosen uniformly in t?
- Characterize the properties of Brownian paths leading to (*).

Regularization by nonlinear noise

• Consider, for $w \in C([0, T])$,

$$du + rac{1}{2} \partial_x u^2 \circ dw_t = 0, \quad ext{on } \mathbb{R}.$$

Get

$$\|u(t)\|_{W_x^{1,\infty}} \leq \left(\max_{0\leq s\leq t}(w(s)-w(t))\wedge (w(t)-\min_{0\leq s\leq t}w(s))\right)^{-1}.$$

- Decisive path property: "Changing sign of the derivative".
- For $w = \beta$ we get

$$v(t) \in W^{1,\infty}, \quad \mathbb{P}-a.s.$$

• But: Zero set depends on time t > 0.

Regularization by nonlinear noise

• Example:

$$\partial_t u + \frac{1}{2} \partial_x u^2 \circ d\beta = 0$$
$$u(0) = 1_{[0,1]}$$

• Solution *u*:

Path-by-path regularization by noise

Path-by-path regularization by noise

Path-by-path regularization by noise

Framework

• Model example:

$$\partial_t u + \frac{1}{2} \partial_x u^2 \circ dw_t = 0 \quad \text{on } \mathbb{T},$$

with $w \in C([0, T]; \mathbb{R})$.

- Proof works in general dimension and general non-linear flux A.
- How to classify irregularity properties of w?

Idea of the proof

• Ideas of the proof of regularity for

$$\partial_t u + rac{1}{2} \partial_x u^2 \circ deta_t = 0 \quad ext{on \mathbb{T}}.$$

• By definition quasi-solutions satisfy

$$d\chi + v\partial_{\chi}\chi \circ d\beta_t = \partial_{\nu}m_t$$

for some finite Radon measure m.

• Change of variables gives

$$\chi(t,x,v) = \chi_0(x+v\beta_t,v) + \int_0^t \partial_v m(s,x+v(\beta_t-\beta_s),v)ds$$

Averaging over velocity

$$u(t,x) = \int_{v} \chi = \int_{v} \chi_{0}(x+v\beta_{t},v)dv + \int_{0}^{t} \int_{v} \partial_{v} m(s,x+v(\beta_{t}-\beta_{s}),v)dvds.$$

Framework

• Fourier transform in spatial variable

$$\hat{u}(t,n) = \int_{v} e^{-iv\beta_{t}n} \hat{\chi}_{0}(n,v) dv + \int_{0}^{t} \int_{v} e^{-iv(\beta_{t}-\beta_{s})n} \partial_{v} \hat{m}(s,n,v) dv ds.$$

- The oscillatory integrals have a regularizing effect, both in v and in $\beta_t \beta_s$.
- For SDE this has been considered by [Catellier, Gubinelli; SPA, 2016]: A path w ∈ C(ℝ₊; ℝ^d) is said to be (ρ, γ)-irregular if

$$|\int_s^t e^{i\langle a, w_r
angle} dr| \lesssim (1+|a|)^{-
ho} |t-s|^{\gamma} \quad \forall a \in \mathbb{R}^d, \, s < t.$$

Note:

$$\int_{s}^{t} e^{i\langle a,w_r\rangle} dr = \int_{\mathbb{R}} e^{i\langle a,x\rangle} dL_{w}^{s,t}(x) = L_{w}^{\hat{s},t}(a)$$

the Fourier transform of the local time.

Main result

Theorem

Let $w \in C^{\eta}([0, T], \mathbb{R}^d)$ for some $\eta > 0$ be (ρ, γ) -irregular, u a bounded quasi-solution solution to

$$\partial_t u + rac{1}{2} \partial_x u^2 \circ dw_t = 0 \quad on \ \mathbb{T}.$$

Then, for all

$$\lambda < rac{
ho(\eta+1)-(1-\gamma)}{(
hoee 1)(\eta+1)+(1-\gamma)},$$

we have

$$\|u\|_{L^1_t W^{\lambda,1}_x} < \infty.$$

Corollary

Let β^H be a fractional Brownian motion with Hurst parameter $H \in (0, \frac{1}{2}]$ and u be a bounded quasi-solution to

$$\partial_t u + \frac{1}{2} \partial_x u^2 \circ d\beta_t^H = 0 \quad on \ \mathbb{T}.$$
 (1)

Then, for all $\lambda < rac{1}{1+2H}$,

$$\|u\|_{L^1_t W^{\lambda,1}_x} < \infty.$$

• Note: Fully recover the probabilistic result from [G., Souganidis; *CPAM*, 2016]: For $H = \frac{1}{2}$ get $\lambda < \frac{1}{2}$.

A path-by-path scaling condition

A path-by-path scaling condition

A path-by-path scaling condition

Discussion of the path classification

- The proof given in [G., Souganidis; *CPAM*, 2016] uses the *scaling property* of Brownian motion and independence of increments.
- However: (ρ, γ)-irregularity depends on two parameters, also encoding a time regularity. Hence, does not seem to be optimal.
- Moreover: $(
 ho,\gamma)$ -irregularity not easy to check.
- To avoid the use of oscillatory integrals: Completely avoid Fourier methods in the proof (motivated by [Jabin, Vega, *JMPA*, 2004]).

Path-by-path scaling condition

Leads to

Path-by-path scaling condition: Assume that there is a ι ∈ [¹/₂,1] such that for every σ ∈ [0,1), λ ≥ 1 we have

$$\int_0^T \int_0^{T-r} e^{-\lambda t} |\underbrace{w_{t+r} - w_r}_{=:w_{r,r+t}}|^{-\sigma} dt dr \lesssim \lambda^{-1+\iota\sigma}.$$

- Easy to see: (ρ, γ) -irregularity implies path-by-path scaling.
- Assuming path-by-path scaling can obtain the same regularity result as above.

Thanks

Thanks!