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From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent par-
ticles, ..).
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- State space My := NE’V, i.e. configurations 7 : Ty — Ng : System in state
n if container k contains 7(k) particles.
- Local jump rate function g : Ng — Ry

Translation invariant, asymmetric, zero mean transition probability

p(k,1) = p(k — 1), ka(k)zo.

Markov jump process 7(t) on M.
- n(k,t) = number of particles in box k at time t.



- Hydrodynamic limit? Multi-scale dynamics

Microscopic scale: Particles Macroscopic scale: PDEs
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Gridsize = % Mean dynamics

- Empirical density field: x"V(x,t) := &>, dx (x)n(k, tN?).
- [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
pM () =" p(t) dx
with
ep = Bu®(p)

with ® the mean local jump rate ®(p) = E, [g(1(0))].
- Loss of information:
» Fluctuations, rare events / large deviations?
» Model / Approximation error: u" = 5+ O(N*%).



Fluctuating Hydrodynamics?

Microscopic scale: Particles Macroscopic scale: PDEs
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Microscopic scale: Particles Mesoscopic scale: Conservative Macroscopic scale: PDEs
SPDEs
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Gridsize = % Fluctuation correction Mean dynamics

Ansatz: Conservative SPDEs

8tpN = axxd)(pN) SIE N7%6X <¢%(pN)fN) )

with &N noise, spatially correlated with decorrelation length %, and white in time,



Informally, correct large deviations:
- Recall

Bup™ = B (P(p")) + N~H0, (@3 (pM)e").
- Rare events: (Im-)probability to observe a fluctuation p:

PpN ~ |=e V) N large
Informally applying the contraction principle to the solution map
F:N%¢sp

yields as a rate function
I(p) = inf{le(g) : F(g)=p}

Schilder's theorem for Brownian sheet suggests

-
k(g) = / / g die.
0 T

- Get A
I(p) = inf{/o /T\gIdedt: 9p = Ox (P(p)) + Ox (¢§(p)g)}-



Model / Approximation error:
Dep = (o) + 0 (PH(PMINEEN)
Central limit theorems predict

PV =p+N2YL 4+ O(ND)
wN=p+N"IY L O(NTD).

Conclude: Higher order of approximation

p = p" + O(NTY).

Challenges:

- Well-posedness of conservative SPDEs (2013-): [Lions, Perthame,
Souganidis; 2013, 2014], [G., Souganidis; 2015, 2017], [Fehrman, G.; 2021],
[Dareiotis, G.; 2020], [Fehrman, G.; 2022].

- Large deviations: [Fehrman, G.; 2022], [Mariani, 2010]

- Expansions / quantified central limit theorems: [Dirr, Fehrman, G.; 2021],

Linear case [Cornalba, Fischer, Ingmanns, Raithel]; [Djurdjevac, Kremp,
Perkowski].



Nonequilibrium statistical mechanics - fluctuating gradient flows

- Many physical systems can be described by a competition between the
relaxation of an energy E and friction in terms of a mobility M
- Gradient flow on an (infinite dimensional) “Riemannian manifold"

[Jordan, Kinderlehrer, Otto, 1998]
OE
Orp = —M(p)—(p).
tp (h)5 . (p)

- For example
Dep = Ad(p) = V - (9(0)V log((p))) = —M(p)%—’j@)

with —M(p)(-) = div(®(p)V-), % = log(®(p)) generalized Boltzmann
entropy.

- Formal non-equilibrium stationary Gibbs state u = %e‘sE(p).

- Detailed-balance: Fluctuating gradient flow
([Ottinger 2005], fluctuating hydrodynamics [Spohn 1991])

OE

Oip = =M(p)5-(p) + VEME (p)e.

- Decorrelation length ~ typical particle distance / grid-size: & — &°
- For example ¢
Bep = DAD(p) + V- (P2 (p) &)



SETES

- E.g. symmetric simple exclusion process:
[Giacomin, Lebowitz, Presutti, 1999]

0ep = Dp+ VeV - (Vp(1 - p) &)
- More generally:
dep = AO(p) + V - v(p) + VEV - (a(p) £).
- Fluctuating incompressible Navier-Stokes-Fourier

v =Av+v -Vv+ V- (VT&)
0T =AT + V- (vT)+ |Vamv]? + V- (T &) + V- (VT VV.E).



Stochastic thin films

Orh = —div(h™V Ah) + div(h™/2¢) u(xyd plxy.s)

0 -
/{ X
(source: Griin, Mecke, Rauscher, 2006)

Fluctuating gradient flow structure

Oeh = —M(p) O (k) + M (e,

with E(h) = 3 [ |Vh[?dx and M(h) = div(h™V"),
Relevance to include thermal fluctuations:

- Improved prediction of empirical film rupture time scales
[Griin, Mecke, Rauscher 2006]

- Corrected spreading rate of droplets
[Davidovitch, Moro, Stone 2005]



Machine learning
Feed-forward neural network
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Collecting all parameters 8 = (61, ...,0y) € RM
Stochastic gradient descent / empirical risk minimization

Ony1 =0, — nv9/(9nawn)v

Scaling limits: Small learning rate 7, overparametrization M — co.
Empirical distribution u}! := & 37, 85 — pe solution to

Bepue = div(VV (e, -Jue) + D? - (A(pe, -)pae) + Vodiv(T (ue, - )ué),

where ¢ is space-time white noise and V/, A, T, are non-local operators, see [Chen,
Rotskoff, Bruna, Vanden-Eijnden, 2020].



Numerics for SPDEs? ! Consider

Oep = AD(p) + V - (93 (p) &)
with £ space time white noise.

Difficulty:

- lrregularity of space-time white noise: Solution is not known to take values
in a function space.

- [P-based estimates fail.

- [2-based finite elements not a good choice

Idea: H1-based finite elements.

But, standard basis (e.g. piecewise constant) have non-sparse mass matrix

(Mn)ij = (03, 0)n-1 = (i, () Fgj)i2.

![Banas, G., Vieth, 2020]



Solution:
1. 1d [Emmrich, Siska, CMS, 2012]

2. all dimensions d [Banas, G., Vieth, 2020]: Construction of H! basis
functions ¥;(x), i € {1,...,J}9 with ¢; = —Aq); both with small support.




From large deviations to parabolic-hyperbolic PDE with irregular drift

Rare events: (Im-)probability to observe a fluctuation p:

PluV ~ ]=eN) N large
A bit more precisely, for every open set O,
IP[;LN c O] 5 efN inf,co1(p)

e~ Ninfoeo (o) <p[N € O]

Zero range process

:
OB / / 6P dxdt = 020 = Bocb(0) + O, (OE (DI

"skeleton equation"




Theorem ([Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis,
Landim; 1995])

For every open set O C D([0, T], M) we have

IP[,U'N c O] S efN inf,eo1(p)

Pl € 0] S e~ iMoco /)
e~ N inf,eo J(p) <P € 0]

where J =I5 and A is the set of nice fluctuations y = p dx with p a solution to

for some g € ;7 C13

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation
[Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020].
Counter-examples for Boltzmann [Heydecker; 2021].

Difficult: Open problem for the zero range process since [Benois, Kipnis, Landim;

1nncl



Parabolic-hyperbolic PDE with irregular drift

Skeleton equation

Bep = 0 ®(p) + 0x(P2(p) g ).
~—
elL?

o

How difficult is the well-posedness?
- Difficulty: Stable a-priori bound? LP framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation
- We consider, ®(p) = p™,

atp = 8><me ar 8X(p%g)

with g € L{LP and pg € L..
- Via rescaling (“zooming in"):
» p=qg=2is critical.
» r =1 s critical, r > 1 is supercritical.

Recall: [Le Bris, Lions; CPDE 2008], [Karlssen, Risebro, Ohlberger, Chen, ..]

1
Oep = EaXX(UO'* p) + 0x(pg)

needs g € wtt

loc.x!

divg € L.



Overview of ingredients of the proof:

- Part 1: Apriori-bounds; entropy-entropy dissipation estimates
- Part 2: Extending the concepts of DiPerna-Lions, Ambrosio, Le Bris-Lions
to nonlinear PDE (but going beyond).

- Part 3: Uniqueness for renormalized entropy solutions (variable doubling):
New treatment of kinetic dissipation measure. Exploit finite singular
moments.



Theorem (The skeleton equation, Fehrman, G. 2022)

Let g € L2, po non-negative and [ polog(po)dx < oc. There is a unique weak
solution to

ep = Ad(p) + V - (P2 (p)g)-

The map g — p, L, — Lt ,, is weak-strong continuous. E.g. including all
0() = o™, m€ [L 00):

Theorem (LDP for zero range process, G., Heydecker, 2023)

The rescaled zero range process satisfies the full large deviations principle with
rate function

I(p) = 10ep — Osx® () -2 -

(p)
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