Fluctuations in conservative systems and SPDEs

Benjamin Gess

Universität Bielefeld & Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig

> scales conference, Mainz, June 2023 joint work with Ben Fehrman Carxiv, Invent. Math. 2023+] and Daniel Heydecker Carxiv]

Content

From interacting particle systems to conservative SPDEs

From large deviations to parabolic-hyperbolic PDE with irregular drift

Parabolic-hyperbolic PDE with irregular drift

From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent particles, ...).

- State space $\mathbb{M}_N:=\mathbb{N}_0^{\mathbb{T}_N}$, i.e. configurations $\eta:\mathbb{T}_N\to\mathbb{N}_0$: System in state η if container k contains $\eta(k)$ particles.
- Local jump rate function $g: \mathbb{N}_0 \to \mathbb{R}_0^+$.
- Translation invariant, asymmetric, zero mean transition probability

$$p(k,l)=p(k-l), \quad \sum_{k} kp(k)=0.$$

- Markov jump process $\eta(t)$ on \mathbb{M}_N .
- $\eta(k,t)$ = number of particles in box k at time t.

- Hydrodynamic limit? Multi-scale dynamics

Microscopic scale: Particles

- Empirical density field: $\mu^N(x,t) := \frac{1}{N} \sum_k \delta_{\frac{k}{N}}(x) \eta(k,tN^2)$.
- [Hydrodynamic limit Ferrari, Presutti, Vares; 1987] $\mu^{N}(t) \rightharpoonup^{*} \bar{\rho}(t) dx$

with

$$\partial_t \bar{\rho} = \partial_{xx} \Phi(\bar{\rho})$$

with Φ the mean local jump rate $\Phi(
ho)=\mathbb{E}_{
u_
ho}[g(\eta(0))].$

- Loss of information:
 - ► Fluctuations, rare events / large deviations?
 - ▶ Model / Approximation error: $\mu^N = \bar{\rho} + O(N^{-\frac{1}{2}})$.

with ξ^N noise, spatially correlated with decorrelation length $\frac{1}{N}$, and white in time,

Informally, correct large deviations:

- Recall

$$\partial_t \rho^N = \partial_{xx} \left(\Phi(\rho^N) \right) + N^{-\frac{1}{2}} \partial_x \left(\Phi^{\frac{1}{2}}(\rho^N) \xi^N \right).$$

- Rare events: (lm-)probability to observe a fluctuation ρ :

$$\mathbb{P}[\rho^N \approx \rho] = e^{-NI(\rho)} \quad N \text{ large}$$

– Informally applying the contraction principle to the solution map

$$F: N^{-\frac{1}{2}}\xi \mapsto \rho$$

yields as a rate function

$$I(\rho) = \inf\{I_{\xi}(g): F(g) = \rho\}.$$

- Schilder's theorem for Brownian sheet suggests

$$I_{\xi}(g) = \int_0^T \int_{\mathbb{T}} |g|^2 dx dt.$$

 $- \ \mathsf{Get} \\ I(\rho) = \inf \left\{ \int_0^T \int_{\mathbb{T}} |g|^2 \, dx dt : \ \partial_t \rho = \partial_\mathsf{xx} \left(\Phi(\rho) \right) + \partial_\mathsf{x} \left(\Phi^{\frac{1}{2}}(\rho) g \right) \right\}.$

Model / Approximation error:

$$\partial_t \rho^N = \partial_{xx} \Phi(\rho^N) + \partial_x \left(\Phi^{\frac{1}{2}}(\rho^N) N^{-\frac{1}{2}} \xi^N \right).$$

Central limit theorems predict

$$\rho^{N} = \bar{\rho} + N^{-\frac{1}{2}} Y^{1} + O(N^{-1})$$

$$\mu^{N} = \bar{\rho} + N^{-\frac{1}{2}} Y^{1} + O(N^{-1}).$$

Conclude: Higher order of approximation

$$\mu^{\mathsf{N}} = \rho^{\mathsf{N}} + O(\mathsf{N}^{-1}).$$

Challenges:

- Well-posedness of conservative SPDEs (2013-): [Lions, Perthame, Souganidis; 2013, 2014], [G., Souganidis; 2015, 2017], [Fehrman, G.; 2021], [Dareiotis, G.; 2020], [Fehrman, G.; 2022].
- Large deviations: [Fehrman, G.; 2022], [Mariani, 2010]
- Expansions / quantified central limit theorems: [Dirr, Fehrman, G.; 2021],
 Linear case [Cornalba, Fischer, Ingmanns, Raithel]; [Djurdjevac, Kremp,
 Perkowski].

Nonequilibrium statistical mechanics - fluctuating gradient flows

- Many physical systems can be described by a competition between the relaxation of an energy E and friction in terms of a mobility M
- Gradient flow on an (infinite dimensional) "Riemannian manifold" [Jordan, Kinderlehrer, Otto, 1998]

$$\partial_{\mathsf{t}}
ho = -\mathsf{M}(
ho) rac{\partial \mathsf{E}}{\partial
ho}(
ho).$$

- For example

$$\partial_t
ho = \Delta \Phi(
ho) =
abla \cdot (\Phi(
ho)
abla \log(\Phi(
ho))) = -M(
ho) rac{\partial \mathcal{E}}{\partial
ho}(
ho)$$

with $-M(\rho)(\cdot)=\operatorname{div}(\Phi(\rho)\nabla\cdot)$, $\frac{\partial \mathcal{E}}{\partial \rho}=\log(\Phi(\rho))$ generalized Boltzmann entropy.

- Formal non-equilibrium stationary Gibbs state $\mu = \frac{1}{7}e^{-\varepsilon E(\rho)}$.
- Detailed-balance: Fluctuating gradient flow ([Öttinger 2005], fluctuating hydrodynamics [Spohn 1991])

$$\partial_t \rho = -M(\rho) \frac{\partial E}{\partial \rho}(\rho) + \sqrt{\varepsilon} M^{\frac{1}{2}}(\rho) \xi.$$

- Decorrelation length pprox typical particle distance / grid-size: $\xi o \xi^\delta$
- For example

$$\partial_t
ho = \Delta \Phi(
ho) +
abla \cdot (\Phi^{rac{1}{2}}(
ho) \, \xi^\delta)$$

Examples

 E.g. symmetric simple exclusion process: [Giacomin, Lebowitz, Presutti, 1999]

$$\partial_t
ho = \Delta
ho + \sqrt{arepsilon}
abla \cdot (\sqrt{
ho(1-
ho)} \, \xi^\delta).$$

- More generally:

$$\partial_t \rho = \Delta \Phi(\rho) + \nabla \cdot \nu(\rho) + \sqrt{\varepsilon} \nabla \cdot (\sigma(\rho) \xi^{\delta}).$$

- Fluctuating incompressible Navier-Stokes-Fourier

$$\begin{split} \partial_t v = & \Delta v + v \cdot \nabla v + \nabla \cdot (\sqrt{T}\xi_1) \\ \partial_t T = & \Delta T + \nabla \cdot (vT) + |\nabla_{sym} v|^2 + \nabla \cdot (T\xi_1) + \nabla \cdot (\sqrt{T}\nabla v \xi_2). \end{split}$$

Stochastic thin films

$$\partial_t h = -\operatorname{div}(h^m \nabla \Delta h) + \operatorname{div}(h^{m/2} \xi)$$

$$0$$

$$\mathbf{u}(x,y,t) \quad p(x,y,t)$$

Fluctuating gradient flow structure

$$\partial_t h = -M(\rho) \frac{\partial E}{\partial h}(h) + M^{\frac{1}{2}}(h)\xi,$$

λ

(source: Grün. Mecke. Rauscher.

with $E(h) = \frac{1}{2} \int |\nabla h|^2 dx$ and $M(h) = \text{div}(h^m \nabla \cdot)$, Relevance to include thermal fluctuations:

- Improved prediction of empirical film rupture time scales
 [Grün, Mecke, Rauscher 2006]
- Corrected spreading rate of droplets [Davidovitch, Moro, Stone 2005]

Machine learning

Feed-forward neural network

Collecting all parameters $\theta = (\theta_1, \dots, \theta_M) \in \mathbb{R}^M$ Stochastic gradient descent / empirical risk minimization

$$\theta_{n+1} = \theta_n - \eta \nabla_{\theta} I(\theta_n, \omega_n),$$

Scaling limits: Small learning rate η , overparametrization $M \to \infty$. Empirical distribution $\mu_t^M := \frac{1}{M} \sum_i \delta_{\theta_t^i} \to \mu_t$ solution to

$$\partial_t \mu_t = \operatorname{div}(\nabla V(\mu_t, \cdot)\mu_t) + D^2 : (A(\mu_t, \cdot)\mu_t) + \sqrt{\sigma} \operatorname{div}(T(\mu_t, \cdot)\mu_\xi),$$

where ξ is space-time white noise and V, A, T_{μ} are non-local operators, see [Chen, Rotskoff, Bruna, Vanden-Eijnden, 2020].

Numerics for SPDEs? 1 Consider

$$\partial_t \rho = \Delta \Phi(\rho) + \nabla \cdot (\Phi^{\frac{1}{2}}(\rho) \xi^{\delta})$$

with ξ space time white noise.

Difficulty:

- Irregularity of space-time white noise: Solution is not known to take values in a function space.
- L^p-based estimates fail.
- L²-based finite elements not a good choice

Idea: H^{-1} -based finite elements.

But, standard basis (e.g. piecewise constant) have non-sparse mass matrix

$$(M_h)_{i,j}=(\varphi_i,\varphi_j)_{H^{-1}}=(\varphi_i,(-\Delta)^{-1}\varphi_j)_{L^2}.$$

Solution:

- 1. 1d [Emmrich, Siska, CMS, 2012]
- 2. all dimensions d [Banas, G., Vieth, 2020]: Construction of H^1 basis functions $\psi_i(x)$, $i \in \{1, \ldots, J\}^d$ with $\phi_i = -\Delta \psi_i$ both with small support.

From large deviations to parabolic-hyperbolic PDE with irregular drift

Rare events: (Im-)probability to observe a fluctuation ρ :

$$\mathbb{P}[\mu^N \approx p] = e^{-N I(p)}$$
 N large

A bit more precisely, for every open set O,

$$\mathbb{P}[\mu^N \in \bar{O}] \lesssim e^{-N \inf_{\rho \in \bar{O}} I(\rho)}$$

$$e^{-N \inf_{\rho \in O} I(\rho)} \lesssim \mathbb{P}[\mu^N \in O]$$

Zero range process

$$I(\rho) = \inf\{\int_0^T \int_{\mathbb{T}} |g|^2 dx dt : \underbrace{\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho)g)}_{\text{"skeleton equation"}}\}.$$

Theorem ([Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis, Landim; 1995])

For every open set $O\subseteq D([0,T],\mathcal{M}_+)$ we have

$$\mathbb{P}[\mu^{\mathsf{N}} \in \bar{O}] \lesssim e^{-\mathsf{N} \inf_{
ho \in \bar{O}} I(
ho)}$$

$$\mathbb{P}[\mu^N \in ar{O}] \lesssim e^{-N \inf_{
ho \in ar{O}} I(
ho)}$$
 $e^{-N \inf_{
ho \in ar{O}} J(
ho)} \lesssim \mathbb{P}[\mu^N \in O]$

where $J=\overline{I_{|A}}$ and A is the set of nice fluctuations $\mu=
ho\,\mathrm{d}x$ with ho a solution to

$$\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho)g)$$

for some $g \in C^{1,3}_{t,x}$.

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation [Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020]. Counter-examples for Boltzmann [Heydecker; 2021].

Difficult: Open problem for the zero range process since [Benois, Kipnis, Landim;

Parabolic-hyperbolic PDE with irregular drift

Skeleton equation

$$\partial_t \rho = \partial_{xx} \Phi(\rho) + \partial_x (\Phi^{\frac{1}{2}}(\rho) \underbrace{g}_{\in L^2_{t,x}}).$$

How difficult is the well-posedness?

- Difficulty: Stable a-priori bound? L^p framework does not work.
- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation

- We consider, $\Phi(\rho) = \rho^m$,

$$\partial_t \rho = \partial_{xx} \rho^m + \partial_x (\rho^{\frac{m}{2}} g)$$

with $g \in L^q_t L^p_x$ and $\rho_0 \in L^r_x$

Via rescaling ("zooming in"):

ightharpoonup p = q = 2 is critical.

ightharpoonup r = 1 is critical, r > 1 is supercritical.

Recall: [Le Bris, Lions; CPDE 2008], [Karlssen, Risebro, Ohlberger, Chen, ...]

$$\partial_t
ho = rac{1}{2} \partial_{xx} (\sigma \sigma^* \,
ho) + \partial_x (
ho \, g)$$

needs $g \in W^{1,1}_{loc,x}$, div $g \in L^{\infty}$.

Overview of ingredients of the proof:

- Part 1: Apriori-bounds; entropy-entropy dissipation estimates
- Part 2: Extending the concepts of DiPerna-Lions, Ambrosio, Le Bris-Lions to nonlinear PDE (but going beyond).
- Part 3: Uniqueness for renormalized entropy solutions (variable doubling):
 New treatment of kinetic dissipation measure. Exploit finite singular moments.

Theorem (The skeleton equation, Fehrman, G. 2022)

Let $g \in L^2_{t,x}$, ρ_0 non-negative and $\int \rho_0 \log(\rho_0) dx < \infty$. There is a unique weak solution to

$$\partial_t \rho = \Delta \Phi(\rho) + \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g).$$

The map $g \mapsto \rho$, $L^2_{t,x} \to L^1_{t,x}$, is weak-strong continuous. E.g. including all $\Phi(\rho) = \rho^m$, $m \in [1,\infty)$.

Theorem (LDP for zero range process, G., Heydecker, 2023)

The rescaled zero range process satisfies the <u>full</u> large deviations principle with rate function

$$I(\rho) = \|\partial_t \rho - \partial_{xx} \Phi(\rho)\|_{H^{-1}_{\Phi(\rho)}}.$$

References

- L. Banas, B. Gess, and C. Vieth.

 Numerical approximation of singular-degenerate parabolic stochastic PDEs.

 arXiv:2012.12150 [cs, math], Dec. 2020.
- B. Fehrman and B. Gess.

 Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift.

 arXiv:1910.11860 [math], Mar. 2022.
- A Rescaled Zero-Range Process for the Porous Medium Equation: Hydrodynamic Limit, Large Deviations and Gradient Flow, Mar. 2023.

Advertisement: Two open PostDoc positions at Bielefeld University (CRC 1283, and ERC CoG "FluCo") in stochastic analysis, in particular,

- stochastic PDEs

B. Gess and D. Heydecker.

- non-equilibrium statistical mechanics
- mathematics of machine learning
- stochastic dynamics.