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Principle viewpoint

Consider large, interacting, stochastic systems
(complex dynamics, many model parameters)

Effective behavior by universal scaling limits.
Hydrodynamic limits leading to partial differential equations (PDE)

Stochastic fluctuations often are essential, e.g. meta-stability

Aim: Universal scaling limits, capturing both the average behavior and
fluctuations

Ansatz: Conservative SPDEs
Oru = divF (u, Du) + /ediv(G(u)¢&),

with & space-time white noise, as universal fluctuating continuum models.

Many open problems, e.g. well-posedness, regularity, stochastic dynamics
[Fehrman, G., 2019, 2020, 2022], [Mariani, 2010], [Lions, Souganidis 1998ff], [Gassiat,
G., Lions, Souganidis 2021], ...



Nonequilibrium statistical mechanics - fluctuating gradient flows

- Gradient flow on an (infinite dimensional) “Riemannian manifold"
[Jordan, Kinderlehrer, Otto, 1998]

Brp= —M(p)%’;(p). (e.8. X = ~M(X)VE(X)).

- Formal non-equilibrium stationary Gibbs state = Le=N "E(@)"dp".

Detailed-balance: Fluctuating gradient flow
([Ottinger 2005], fluctuating hydrodynamics [Spohn 1991])

aE 1 1
Oep = —M(p)afp(p) + N~z Mz(p)¢.

- Decorrelation length ~ typical particle distance / grid-size: & — ¢V
- Nonlinear diffusion

Oup" = (") + N30, (93 ("))



Fluctuating hydrodynamics and macroscopic fluctuation theory
[Spohn 1991] [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim 2015]
Recall: Fluctuating gradient flow
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depN = —M(p")

Rare events: (Im-)probability of a fluctuation in small noise N=2 — 0 limit
PpN ~ | =e M) N large.

Informally, “by” contraction principle LDP has rate function

mf{/g Orp =—M ()E) ()JFM()}

— M2 (5)(@rp + M(p) S (o)

Macroscopic fluctuation theory: Postulate /(p) as energy for non-equilibrium sys-
tems.



From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent par-
ticles, ..).
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State space My := Ng’v, i.e. configurations 7 : Ty — Ny : System in state
7 if container k contains 7(k) particles.

Local jump rate function g : Ng — R

Translation invariant, asymmetric, zero mean transition probability p(k, /).
- Markov jump process 7(t) on My.

- n(k, t) = number of particles in box k at time t.



- Hydrodynamic limit? Multi-scale dynamics

Microscopic scale: Particles Macroscopic scale: PDEs
b
oftf
[off
o (oflffo
ot {oflff
toallo
ofoffffof
el bl bbbl bld
=
Gridsize = e Mean dynamics

N

- Empirical density field: u"(x, t) := § 30, 0x (x)n(k, tN?).
* — [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
U (E) = p(t) o
with
Dep = D (D)

with ® the mean local jump rate ®(p) = E, [g(n(0))].
- Loss of information:

» Fluctuations, rare eventls?
» Error: u¥ =5+ O(N™2).



Fluctuating Hydrodynamics?

Microscopic scale: Particles Macroscopic scale: PDEs
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Gridsize = ~ Mean dynamics
Microscopic scale: Particles Mesoscopic scale: Conservative Macroscopic scale: PDEs
SPDEs
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Ansatz: Conservative SPDEs

Dup = 0 ®(p™) + N~ 20, (03 (p)e)

Informal justification:

1. Physics: Fluctuation-dissipation relation, Fluctuating Wasserstein gradient
£l R N A N P D e e e e e .



From large deviations to parabolic-hyperbolic PDE with irregular drift
=NI().

Rare events: (Im-)probability to observe a fluctuation p: P[uN ~ | =e
Zero range process €2,

/(p):inf{/t BlERGE) =gt () TE) ).

"controlled nonlinear Fokker-Planck equation"

Theorem ([Large deviation principle, Kipnis, Olla, Varadhan, Benois, Landim, 80’s])
For every open set O C D([0, T], M) we have

IP)[/LN c O] S efN inf,co /(1)

e~Ninfuco J(0) < PN ¢ 0] < P[uN € O] < e infuco 1)
where J = ITA and A is the set of nice fluctuations . = p dx with p a solution to
9ep = O ®(p) + Ox(P(p)OxH)
for some H € C.2.Problem: T, = 17

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation



Theorem (The skeleton equation, [Fehrman, G. 2022])

Let g € L%X, po non-negative and [ polog(po)dx < co. There is a unique weak
solution to ;
dep = AP(p) + div(®=(p)g).

1
t,x

The map g —p, L7, — L
m € [1, 00).

is weak-strong continuous. E.g. ®(p) = p™,

Comment on the proof:Extending DiPerna-Lions, Ambrosio, Le Bris-Lions to non-
linear PDE & combination with kinetic solution theory.

Theorem (LDP for zero range process, [G. Heydecker 2023])

The zero range process satisfies the full large deviations principle with rate
function

I(p) = |0:p — aqu)(p)”Hg(;)'



Further Examples: Machine learning
Feed-forward neural network
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Collecting all parameters 6 = (6y,...,0) € RM
Stochastic gradient descent / empirical risk minimization

6n+1 == 0n brs 77V0/(f9(X)a Y),

Scaling limits: Small learning rate 7, overparametrization M — co.
Shallow network: Empirical distribution p} := 7; 3=, dg: — p¢ solution to

Oepe = div(V V (e, - )pe) + Vodiv(T (e, ) o €),

where ¢ is space-time white noise and V/, A, T, are non-local operators, see [Chen,
Rotskoff, Bruna, Vanden-Eijnden, 2020], [Gess, Gvalani, Konarovskyi, 2022].



Fluctuating mean field systems
- Interacting agents with common noise

. s | Fad .
aXi=o(X}, ; > 6y) 0 dBt + a(X], = > 6y dW,
J#i J#i

with B! environmental noise, W, individual noise.

- Informally: Conditioned empirical measure
1
e ss :
Moo= Z Z 5)(: — U
with © = m dx satisfying the nonlocal conservative SPDE
1
Oym = EA (a?(x,m)m) + V - (o(x, m)m o dB;).

See, e.g. [Kurtz, Xiong 2001], [Coghi, Gess, 2019].



Stochastic thin films

Orh = —div(h™V Ah) + div(h™/2¢) u(xyd plxy.s)

0 -
/{ X
(source: Griin, Mecke, Rauscher, 2006)

Fluctuating gradient flow structure

Oeh = —M(p) O (k) + M (e,

with E(h) = 3 [ |Vh[?dx and M(h) = div(h™V"),
Relevance to include thermal fluctuations:

- Improved prediction of empirical film rupture time scales
[Griin, Mecke, Rauscher 2006]

- Corrected spreading rate of droplets
[Davidovitch, Moro, Stone 2005]



Conclusion:
- Conservative SPDEs as universal fluctuating continuum models.

- Compared to classical hydrodynamic description they include information
on fluctuations.

- Central limit fluctuations and large deviations of microscopic systems are
correctly captured by the conservative SPDEs.
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