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Principle viewpoint

- Consider large, interacting, stochastic systems
(complex dynamics, many model parameters)

- E�ective behavior by universal scaling limits.
Hydrodynamic limits leading to partial di�erential equations (PDE)

- Stochastic �uctuations often are essential, e.g. meta-stability

- Aim: Universal scaling limits, capturing both the average behavior and
�uctuations

- Ansatz: Conservative SPDEs

∂tu = divF (u,Du) +
√
εdiv(G (u)ξ),

with ξ space-time white noise, as universal �uctuating continuum models.

- Many open problems, e.g. well-posedness, regularity, stochastic dynamics
[Fehrman, G., 2019, 2020, 2022], [Mariani, 2010], [Lions, Souganidis 1998�], [Gassiat,
G., Lions, Souganidis 2021], ...



Nonequilibrium statistical mechanics - �uctuating gradient �ows

- Gradient �ow on an (in�nite dimensional) �Riemannian manifold�
[Jordan, Kinderlehrer, Otto, 1998]

∂tρ = −M(ρ)
∂E

∂ρ
(ρ). (e.g. Ẋ = −M(X )∇E (X )).

- Formal non-equilibrium stationary Gibbs state µ = 1

Z e
−N−1E(ρ)”dρ”.

- Detailed-balance: Fluctuating gradient �ow
([Öttinger 2005], �uctuating hydrodynamics [Spohn 1991])

∂tρ = −M(ρ)
∂E

∂ρ
(ρ) + N−

1

2M
1

2 (ρ)ξ.

- Decorrelation length ≈ typical particle distance / grid-size: ξ → ξN

- Nonlinear di�usion

∂tρ
N = ∂xxΦ(ρN) + N−

1

2 ∂x

(
Φ

1

2 (ρN)ξN
)
.



Fluctuating hydrodynamics and macroscopic �uctuation theory

[Spohn 1991] [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim 2015]

Recall: Fluctuating gradient �ow

∂tρ
N = −M(ρN)

∂E

∂ρ
(ρN) + N−

1

2M
1

2 (ρN)ξ.

Rare events: (Im-)probability of a �uctuation ρ in small noise N−
1

2 → 0 limit

P[ρN ≈ ρ] = e−N I (ρ) N large.

Informally, �by� contraction principle LDP has rate function

I (ρ) = inf{
∫
t,x

g2 : ∂tρ = −M(ρ)
∂E

∂ρ
(ρ) + M

1

2 (ρ)g}

= ‖M− 1

2 (ρ)(∂tρ+ M(ρ)
∂E

∂ρ
(ρ))‖2L2

Macroscopic �uctuation theory: Postulate I (ρ) as energy for non-equilibrium sys-
tems.



From interacting particle systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent par-
ticles, ..).

- State space MN := NTN
0
, i.e. con�gurations η : TN → N0 : System in state

η if container k contains η(k) particles.

- Local jump rate function g : N0 → R+
0
.

- Translation invariant, asymmetric, zero mean transition probability p(k, l).

- Markov jump process η(t) on MN .

- η(k, t) = number of particles in box k at time t.



- Hydrodynamic limit? Multi-scale dynamics

- Empirical density �eld: µN(x , t) := 1

N

∑
k δ k

N
(x)η(k , tN2).

- [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]

µN(t) ⇀∗ ρ̄(t) dx

with

∂t ρ̄ = ∂xxΦ(ρ̄)

with Φ the mean local jump rate Φ(ρ) = Eνρ [g(η(0))].

- Loss of information:
I Fluctuations, rare events?
I Error: µN = ρ̄ + O(N− 1

2 ).



Fluctuating Hydrodynamics?

Ansatz: Conservative SPDEs

∂tρ
N = ∂xxΦ(ρN) + N−

1

2 ∂x

(
Φ

1

2 (ρN)ξN
)
.

Informal justi�cation:
1. Physics: Fluctuation-dissipation relation, Fluctuating Wasserstein gradient
�ow, ∞-dim Fokker-Planck equations

∂tρ =

−M(ρ)︷ ︸︸ ︷
∂x(Φ(ρ)∂x

∂E

∂ρ
(ρ)) for E (ρ) =

∫
Ψ(ρ), Ψ′(ρ) = log Φ(ρ).

2. Law of large numbers, central limit �uctuations & correct large deviations



From large deviations to parabolic-hyperbolic PDE with irregular drift

Rare events: (Im-)probability to observe a �uctuation ρ: P[µN ≈ ρ] = e−N I (ρ).
Zero range process

I (ρ) = inf{
∫
t,x

|∂xH|2Φ(ρ) : ∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)

∈L2φ(ρ)︷︸︸︷
∂xH )︸ ︷︷ ︸

"controlled nonlinear Fokker-Planck equation"

}.

Theorem ([Large deviation principle, Kipnis, Olla, Varadhan, Benois, Landim, 80's])

For every open set O ⊆ D([0,T ],M+) we have

P[µN ∈ Ō] . e−N infµ∈Ō I (µ)

e−N infµ∈O J(µ) . P[µN ∈ O] ≤ P[µN ∈ Ō] . e−N infµ∈Ō I (µ)

where J = I|A and A is the set of nice �uctuations µ = ρ dx with ρ a solution to

∂tρ = ∂xxΦ(ρ) + ∂x(Φ(ρ)∂xH)

for some H ∈ C 1,3
t,x .Problem: I|A = I ?

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation

[Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020].
Counter-examples for Boltzmann [Heydecker; 2021].



Theorem (The skeleton equation, [Fehrman, G. 2022])
Let g ∈ L2t,x , ρ0 non-negative and

∫
ρ0 log(ρ0)dx <∞. There is a unique weak

solution to
∂tρ = ∆Φ(ρ) + div(Φ

1

2 (ρ)g).

The map g 7→ ρ, L2t,x → L1t,x is weak-strong continuous. E.g. Φ(ρ) = ρm,
m ∈ [1,∞).

Comment on the proof:Extending DiPerna-Lions, Ambrosio, Le Bris-Lions to non-
linear PDE & combination with kinetic solution theory.

Theorem (LDP for zero range process, [G. Heydecker 2023])
The zero range process satis�es the full large deviations principle with rate
function

I (ρ) = ‖∂tρ− ∂xxΦ(ρ)‖H−1
Φ(ρ)
.



Further Examples: Machine learning

Feed-forward neural network

Collecting all parameters θ = (θ1, . . . , θM) ∈ RM

Stochastic gradient descent / empirical risk minimization

θn+1 = θn − η∇θl(fθ(X ),Y ),

Scaling limits: Small learning rate η, overparametrization M →∞.
Shallow network: Empirical distribution µM

t := 1

M

∑
i δθit → µt solution to

∂tµt = div(∇V (µt , ·)µt) +
√
σdiv(T (µt , ·)µ ◦ ξ),

where ξ is space-time white noise and V ,A,Tµ are non-local operators, see [Chen,

Rotsko�, Bruna, Vanden-Eijnden, 2020], [Gess, Gvalani, Konarovskyi, 2022].



Fluctuating mean �eld systems

- Interacting agents with common noise

dX i
t = σ(X i

t ,
1

L

∑
j 6=i

δX j
t
) ◦ dBt + α(X i

t ,
1

L

∑
j 6=i

δX j
t
)dW i

t

with B i
t environmental noise, W i

t individual noise.

- Informally: Conditioned empirical measure

µL :=
1

L

∑
i

δX i → µ

with µ = mdx satisfying the nonlocal conservative SPDE

∂tm =
1

2
∆
(
α2(x ,m)m

)
+∇ · (σ(x ,m)m ◦ dBt).

See, e.g. [Kurtz, Xiong 2001], [Coghi, Gess, 2019].



Stochastic thin �lms

∂th = −div(hm∇∆h) + div(hm/2ξ)

Fluctuating gradient �ow structure

∂th = −M(ρ)
∂E

∂h
(h) + M

1

2 (h)ξ,

with E (h) = 1

2

∫
|∇h|2dx and M(h) = div(hm∇·),

Relevance to include thermal �uctuations:

- Improved prediction of empirical �lm rupture time scales
[Grün, Mecke, Rauscher 2006]

- Corrected spreading rate of droplets
[Davidovitch, Moro, Stone 2005]



Conclusion:

- Conservative SPDEs as universal �uctuating continuum models.

- Compared to classical hydrodynamic description they include information
on �uctuations.

- Central limit �uctuations and large deviations of microscopic systems are
correctly captured by the conservative SPDEs.
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