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@ We consider the porous medium equation

dru= A (Ju]™tu) on (0, T) x RY
u(0) = up on RY,

with up € L}(RY), m > 1.

o Degenerate parabolic Anderson model
deu=A(Ju/" 'u)+ué on (0, T)xR

with up € LY(R), m € (1,2), & spatial white noise.

@ Aim: Optimal regularity of solutions in (fractional) Sobolev spaces.
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Application: Cell dynamics

@ Spreading of cell populations
dru = div(kVu) + f(u),

where u is the density of cells, f(u) is the reproduction/death rate.

o If cells avoid crowding K is an increasing function of the cell density,
K = ¢(u) with ¢ increasing.
@ In particular cases we have ¢(u) = au”. Hence,

__9 7+1
dru y—l—lAu + f(u),

@ Random environment leads to the degenerate parabolic Anderson model

a
oru = —— A"+ ué,
Tyt ¢

where & is spatial white noise.
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Application: Interacting cells
@ Interacting cell system

L . .
Y vvixi-xi) i=1..L,

where V| is a rescaled interaction potential (repelling)
Vi(x) = A9Va(Ax), A = L4
and  €(0,1).
@ Consider the empirical process
Yoy

Under regularity, decay and symmetry assumptlons on V; obtain

tepuf =

h\'—‘

Theorem (Oelschlager)
If u§ — mo(x)dx, then uf — my(x)dx and with c = 1 [ V4(x) dx,

drm=cAm?, m(0)= mo.

See also: Lions-Mas Gallic 2001, Figalli-Philipowski 2008, Flandoli 2016, Carrillo-Craig-Papacchini
2018
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Scaling arguments and special solutions
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Scaling arguments and special solutions

@ Note
dru = Aul™ = mdiv(|u|™ V)
= ml|u|™ *Au+m(m—1)ul™ 2| V2.
@ Barenblatt solution:
U, t) = =9 (xt ) = t=4(C — k|xt=%/9]2) 71

d k _ (mfl)oc
m—1)+2> 2md

where o = el . We observe that

lime o U(x,t) = MJg(x)

Figure: Fundamental solution of the porous medium equation
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Scaling arguments and special solutions

Lemma

Assume that for some s >0, p>1, C >0 we have

|| UHIZP([O,T];WSW(RQ)) < CHuOHLl(]R)‘Z)’

for all solutions u to PME. Then, necessarily p < m and s <

2
=

Use scale invariances:
1

i(t,x) = u(nt, )N ™1, d(t,x) = u(t,nx)n" 71,
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Scaling arguments and special solutions

Lemma

Assume that for some s >0, p>1, C >0 we have
||u||[L)p([0,T];Ws,p(Rg)) < C”uOHLl(]R)‘Z)’

for all solutions u to PME. Then, necessarily p < m and s < %

Use scale invariances:
1

i(t,x) = u(nt, )N ™1, d(t,x) = u(t,nx)n" 71,

Example
Consider the Barenblatt solution
1
U(t,x) = £4(C— kixt B 2) .
Then _
UeLm([o, T, W*™(RY))

implies s < 2.

Use U(t,x) =t~ *F(xt~P).
e il (2 0 o (A1 12
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Existing regularity results
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Existing regularity results

o Continuity
Caffarelli-Friedman 1979, Sacks 1983, Cafarelli-Evans 1983, DiBenedetto 1983, Ziemer 1982
o Halder continuity: a-Hblder continuity with o = L € (0,1).
Caffarelli-Friedman 1980, DiBenedetto-Friedman 1985, Bogelein, Duzaar, Gianazza 2014
@ Regularity of the open interface

Caffarelli-Friedman 1980, Caffarelli-Vazquez-Wolansky 1987, Caffarelli-Wolanski 1990,
Daskalopoulos-Hamilton 1998, Koch 1999

o Eventual C* regularity
Aronson-Vazquez 1987, Kienzler-Koch-Vazquez 2016

@ Regularity of the pressure or powers of the solution
Koch 1999, Gianazza-Schwarzacher 2016

@ Time regularity (vanishing force)
Aronson-Bénilan 1979, Crandall-Pazy-Tartar 1979, Bénilan-Crandall 1981, Crandall-Pierre 1982

@ Regularity in Sobolev spaces
Lions-Perthame-Tadmor 1994, Ebmeyer 2005, Tadmor-Tao 2007
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Existing regularity results

Let .4 P be the homogeneous Nikolskii space (4P = B;ﬁm).
Theorem (Tadmor, Tao; CPAM 2007, Ebmeyer; JMAA 2005)
Let up € L?>(RZ). Then

ul|m*t < Comlluo?-
| ”L'"“([O,T];e/t/'miﬂ""ﬂ([&g))_ ml| 0||L§

.2
o Note: ]

the optimal regularity of the Barenblatt solution.
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<1, which is inconsistent with the linear case (m = 1) and with
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Existing regularity results

Consider

oru = Aul™.
By (soft) energy methods may be improved to:
Theorem (G., JEMS, 2019+)

Let £ >0, m>2 and uy € L*T¢(RY). Then

||u|m+£

. < Ce.m|luol|}
Lmte ([0, T] A

— L)1<+£ .

2
e (RY))

o Note: optimal regularity for the Barenblatt solution, but m > 2 implies
<L

@ Problem: How to get to more than one derivative?
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Optimal regularity for the porous medium equation
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Optimal regularity for the porous medium equation

Consider

O = %Au[ml +5(t,x) on (0, T)xRY (PME)

with up € LX(RY), S € L1([0, T] x RY).
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Optimal regularity for the porous medium equation

Consider

Ot = %Au[m] +5(t,x) on (0, T)xRY (PME)
with up € LX(RY), S € L1([0, T] x RY).
Theorem (G., JEMS, 2019+)

Let € >0, up € L[**¢(RY), S € L1+¢([0, T] x RY). Let u be the unique entropy
solution to the PME. Then, for all

2
it 1
SG[O,m), peE[l,m)

we have )
ue LP([0, T]; WP (RY)).

loc

In addition, for all & CC RY there is a constant C = C(m,p,s, T, ) such that

ull oo, Trvirsoyy < € (luollfz + 1SN, +1).
(0. T:Vr=#(2) }
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Optimal regularity for the porous medium equation

“Proof”: A real analysis attempt
o Kinetic form [Lions, Perthame, Tadmor 1994], [Chen, Perthame; 2003]:
Introduce

X(U(tax)v V) = 1v<u(t,x) —1y<o.
Then,

dex = [v|™ tAxx +dyq on (0, T) xR xR,

for some g € . Z™.
@ Variation of constants/Duhamel

m— t m—
x(t,x,v)=e " 1m;(o(x, v)+/ eIV 1(F’)A8\,q(r,x7 v)dr.
0
@ Decompose u in degenerate and non-degenerate part:

u(tx) = [ 2t ) =[xt [ xu(en.).

lv|<A [v=2

uO(t,x) ul(t,x)

o Note:
m— t m—
ul(t,X):/ e*M ltAXO(X; V)+/ / efM 1A(t7r)avq(r,x,v).
[v|>A 0 Jlv|>4
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Optimal regularity for the porous medium equation

@ Trivial estimate: Forall r > 1,

g, = | [, 2etexin]| <2

r
Lt.X

@ Recall:

m— t m—
ul(t,X) — / e*M ltAXO(X; V)+/ / efM 1A(t7r)avq(r,x,v).
[v|>A 0 Jlv|>4

@ Heat kernel estimates: For o < 1,
g ar S AT Hm D gl g,

o Test case: m=1, a =1, get uec LLW
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Optimal regularity for the porous medium equation

@ Trivial estimate: Forall r > 1,

g, = | [, 2etexin]| <2

r
Lt.X

@ Recall:
m— t m—
ul(t,X):/ e*M ltAXO(X; V)+/ / efM 1A(t7r)avq(r,x,v).
[v|>24 0 Jlv|>4

Heat kernel estimates: For o < 1,

S e G T

Test case: m=1,a=1,getu e L% W)}"l.
Singular moments

lutll 3 ppar S ATHTH VvVl g,
o Forr=1 a=1—¢: Gives (u=u’+u!)

2
“- 11
we (LELL LEH2 Yy C Liwm o,
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Optimal regularity for the porous medium equation

@ Recall: Forallr > 1,

SA

WO, H/l (0|

] 3 a2 S ATV v Vgl|g -

@ Real interpolation: Problem Llea ! — L7L] only if r =1, otherwise
(LsLL, LEHZ*M)g oo not controlled.

o No optimal integrability.
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Optimal regularity for the porous medium equation

o ldea: Micro-local decomposition of the Fourier-space depending on the
degeneracy in |v|™ L.
@ Aim: Micro-local decomposition is chosen so that all regularity is on ii®, while

i is only L,

£,m—¢

2 _
w€ (LPHZ*" Ly Do C LT ST
N—_—— ~—

a0 st
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Optimal regularity for the porous medium equation

o ldea: Micro-local decomposition of the Fourier-space depending on the
degeneracy in |v|™ L.

@ Aim: Micro-local decomposition is chosen so that all regularity is on ii®, while

i is only L,

£,m—¢

2
ue (LEH2% LY Yoo C LY SV
——
310 gt
o Recall: Kinetic form for y(u(t,x),v)=1,<y(tx) — lv<o
dex =|v|™ *Ax+ad,qon (0, T) xR xR,,

for some g € . Z+.
@ Fourier transformation in time and space (modulo cut-off in time)

ity —|v|" Y EPE = 9,4
= L(iTEV)E

@ Hence, informally,
o 1 s 1
A e TEE ™ T 2 E )
o Gain regularity, depending on the degeneracy of the operator .Z(it,&,v).
Regularity for the PME 18725
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Optimal regularity for the porous medium equation

@ Micro-local decomposition:

o(€)+ Y. 91(278) =1

j>1

Decompose y by

TGRS NCAUA Y

j>1

0 1
x %

o Paley-Littlewood decomposition (in space) to work on fixed blocks of Fourier
modes.

@ On non-degenerate parts use the equation (§ = m&,&) and
velocity-average.
o Establish multiplier estimates to control regularity of x°.
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Optimal regularity for the porous medium equation

Obstacles:

Q Integrability: Established methods yield good estimates only in an L?-framework.
This prevents from obtaining optimal integrability exponents
—> Introduce a new notion of isentropic truncation properties for Fourier mul-
tipliers.

@ Established methods can only make use of the fact that g has finite mass. This
necessarily leads to sub-optimal estimates.
—> Solution: Use that g allows singular moments [ |v|**dg < co.

© Bootstrapping: Established methods rely on bootstrapping, i.e. assuming that
u e W for some o use that x(u) € onf\’,l. But: This is true for o <1 only!
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Space-time optimal regularity for the porous medium equation

Space-time optimal regularity for the porous medium equation

What was left open so far:
@ Space-time regularity
o Initial data in L*(RY) — application to the Barenblatt solution
o Higher order integrability & non-homogeneous estimates
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Space-time optimal regularity for the porous medium equation

Theorem (G., Sauer, Tadmor; 2019)
Let up € LY(RY)NLP(RY), S € L1([0, T] x RY) N LP([0, T] x RY) for some
p € [1,00) and assume m € (1,). Let u be the unique entropy solution. Let
pE€(p,m—1+p) and define
_m—=14p—p 1 _p—p 2
t-— 5 .
p m—1 p m-—1

Then
@ For all o1 € [0,x:) and ox € [0, ky) we have

u € WOP(0, T; WoP(RY)).
@ Let s €[0,1] and define
p:=s(m-1)+1, Kt:= s(ml—ﬁ’ Ky := s,(rn—zﬁ
Then for all o+ € [0,k:), 0x € [0,kx) and q € [1,p] we have
ue W90, T, Wo9(0)).
Regularity for the PME
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Space-time optimal regularity for the porous medium equation

Difficulties:
o ldentifying the right anisotropic fractional spaces

e Fourier analytic method works nicely for homogeneous Besov spaces only
o Leads to Schmeisser, Triebel's dominating mixed anisotropic Besov spaces
e Embedding to non-homogeneous, standard Sobolev spaces delicate

e ['-data: Singular moments [|v|~7q, v € (0,1) not finite anymore
— Respect the different origin of difficulty at the degeneracy |v| =0 and the
singularity at |v| = co.
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Identifying the right spaces

Definition
Let 0; € (—oo,0), i =t,x,
© The homogeneous Besov space with dominating mixed derivatives

S%..B(RI*1) is given by
0 p._ cO0 p(pd - .
S9.B =53 BRI :={fe 2 Ifllsg_g <<},
with the norm

Ifllsg 6= IS!J%?’”Z"XJ||953n/¢19t,xfHLp(RdH)o
: e

Lemma

Let 64,04 >0 and p € [1,e]. Then
(L”(Rd“) NI2BY. NIPBI:N SEMB) — 5B C WRP(R; WSP(RY)),

for Ky < O, Ky < Ox.
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Space-time optimal regularity for the porous medium equation

D B. Gess.

Optimal regularity for the porous medium equation.
arXiv:1708.04408; to appear in JEMS, 2019+.

@ B. Gess, J. Sauer, and E. Tadmor.
Optimal regularity in time and space for the porous medium equation.
arXiv:1902.08632 [math], Feb. 2019.

Worry Bindhday, Francol
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