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Aim:

- How to correct for thermal fluctuations in Navier-Stokes?

- Generally: How to correct for fluctuations around PDEs?
Content:

- Toy model: Zero range process and (nonlinear) diffusion equations
» Relevance of fluctuations

» Gradient flows and fluctuation-dissipation principle - SPDEs
» Large deviations and PDEs with irregular coefficients

- Landau-Lifschitz Navier-Stokes equations, and their large deviations



How to correct for fluctuations around PDEs? From interacting particle
systems to conservative SPDEs

The zero range process (could also consider simple exclusion, independent par-
ticles, ..).
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- State space My := Ng’“, i.e. configurations 1 : Tyy — Np : System in state
7 if container k contains 7(k) particles.

Local jump rate function g : Ng — Ry

Translation invariant, asymmetric, zero mean transition probability.

plk 1) = plk— 1), 3" ko(k) =0.
k

- Markov jump process 7(t) on My.
- n(k, t) = number of particles in box k at time t.



- Hydrodynamic limit? Multi-scale dynamics

Microscopic scale: Particles Macroscopic scale: PDEs
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- Empirical density field: u"(x, t) := § 35, 0x (x)n(k, tN?).
- [Hydrodynamic limit - Ferrari, Presutti, Vares; 1987]
U (E) = p(t) o
with
Oep = O ®(p)

with ® the mean local jump rate ®(p) = E, [g(n(0))].
- Loss of information:
> Model / Approximation error: pu" = j+ O(N_%)
» Fluctuations, rare events / large deviations?



Fluctuating Hydrodynamics?

Microscopic scale: Particles Macroscopic scale: PDEs
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Microscopic scale: Particles Mesoscopic scale: Conservative Macroscopic scale: PDEs
SPDEs
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Ansatz: Conservative SPDEs

8tpN = axxd)(pN) SIE N7%6X <¢%(pN)fN) )

with &N noise, spatially correlated with decorrelation length %, and white in time,



Rate of convergence?
- Higher order expansion / fluctuation correction: Ansatz

pt=p+

Yl Y2
T

What are Yi?
- [Central limit fluctuations in non-equilibrium - Ferrari, Presutti, Vares;
1988]: Fluctuation density fields

Y N(x,£) = N7 (u(x, 1) — EpV(x, 1))
~ NE (uM(x, t) - p)
Then, £(Y1N) —* £(Y1) for N — oo with Y the (Gaussian) solution to
Y (x, 1) = B ' (P(x, 1)) Y (x; 1)) dt + D(®2 (p(x, 1))€)

with £ space-time white noise.

- Analogously

N

PN=p+ e

L
N
- Therefore,  d(uN, pV) = O(N"1) << O(N~2) = d(iV, p).



Rare events: (Im-)probability to observe a fluctuation p. For SDEs:
dXN = b(XM)dt + N~ 2o(XN)dW,
In the limit N — oo we have that X" — X° a.s. in C([0, T]; R") with
dXx? = b(X?)dt.

However, for T — oo this is generally not true, due to large deviations. For
example

dX)} = —vVv(XM)dt + N~z dW,
V(x) = [x|* — x]?




Freidlin-Wentzel large deviations for SDEs:
dX! = b(XMydt + N~ 2o(XN)dW,.
We get P[XN ~ p] = e M) with

/(p)zinf{/0 gl : %p: -
:/0 (%p—b(p))(UU*)fl(p)(%p_b(p))dr
= 150~ e sy sy

Zero range process [Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis, Landim;
1995]: (more see later)

=
I(p) =inf / /T g’dxds : g € L2, Oep = 0P (p) + Ox(P2(p)g)
0
"skeleton equation"
nfl [HB 0 O = 0u9(0) + A(G(0)H) )

——
=[;x |0xH|2®(p)

= [|0ep — 5xx¢(,0)||i,—1 :
®(p)

"controlled nonlinear Fokker-Planck equation"



Contraction principle in large deviation theory: Let X, Y be Hausdorff topolog-
ical spaces and f : X — Y continuous. Let u® a sequence of probability measure
satisfying a large deviation principle with (good) rate function I, that is, for all
U, O C X closed, open resp. we have that
limsupelog u(U) < — inf I(u)
uel

e—0
— N
I|2nJ8f€|ogu (0) > ulgfo I(u),

then f,u® satisfies an LDP with good rate function

I'(y) :=inf{l(x) : f(x) =y}



Informally, correct large deviations:
- Recall

Bup™ = B (P(p")) + N~H0, (@3 (pM)e").
- Rare events: (Im-)probability to observe a fluctuation p:

PpN ~ |=e V) N large
Informally applying the contraction principle to the solution map
F:N%¢sp

yields as a rate function
I(p) = inf{le(g) : F(g)=p}

Schilder's theorem for Brownian sheet suggests

-
k(g) = / / g die.
0 T

- Get A
I(p) = inf{/o /T\gIdedt: 9p = Ox (P(p)) + Ox (¢§(p)g)}-



A general framework: fluctuating gradient flows




Nonequilibrium statistical mechanics - fluctuating gradient flows

- Many physical systems can be described by a competition between the
relaxation of an energy E and friction in terms of a mobility M
- Gradient flow on an (infinite dimensional) “Riemannian manifold"

[Jordan, Kinderlehrer, Otto, 1998]
OE

O = —M(p)a—p(p)- dX: = —M(X;)VE(X;)dt.

- Nonlinear diffusion, with g—’;(p) = log ®(p), _M(p)
—%—0E

B =100} = VA (G(p) RoE(®(2))) = O P12 (0)

- Formal non-equilibrium stationary Gibbs state ;1 = %e‘NflE(f’).

- Detailed-balance: Fluctuating gradient flow
([Ottinger 2005], fluctuating hydrodynamics [Spohn 1991])

OE _i1
Oep = —M(p)afp(pHN PME(D)E. dX, — —M(X,)VE(X)dt + N~ M3 (X)W

- Decorrelation length ~ typical particle distance / grid-size: & — £°

- For example .
dep = B(p) + V- (9} (p) €")



Fluctuating hydrodynamics and macroscopic fluctuation theory

[Spohn 1991] [Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim 2015]
Recall: Fluctuating gradient flow

8E

——(p) + N"2 M3 (p)e.

Rare events: (Im-)probability of a fluctuation p in small noise N~z — 0 limit
PluN ~ 1=e M) N large.

Informally, “by” contraction principle LDP has rate function

1(p) = inf{/t gt Op = —M(p)g—i(p) + M (p)g}

— M2 (0)(0ep + M(p)g—’;(p))||%z

MFT: Use postulated /(p) as energy for non-equilibrium systems.

Nonlinear diffusion

i) =int{ | £ = 0.00) 40, (¢%(p)g)} .

Note: This (informally) coincides with the true rate function of the ZRP.



SETES

- E.g. symmetric simple exclusion process:
[Giacomin, Lebowitz, Presutti, 1999]

Btp = Dp + VeV - (Vp(1 — p) £%).
- More generally (GENERIC):
dep = AO(p) + V - v(p) + VEV - (a(p) £°).
- GENERIC: Fluctuating incompressible Navier-Stokes-Fourier (see later)

Oev =Av + (v - V)v + eV - (£).



Stochastic thin films

Orh = —div(h™V Ah) + div(h™/2¢) u(xyd plxy.s)

0 -
/{ X
(source: Griin, Mecke, Rauscher, 2006)

Fluctuating gradient flow structure

Oeh = —M(p) O (k) + M (e,

with E(h) = 3 [ |Vh[?dx and M(h) = div(h™V"),
Relevance to include thermal fluctuations:

- Improved prediction of empirical film rupture time scales
[Griin, Mecke, Rauscher 2006]

- Corrected spreading rate of droplets
[Davidovitch, Moro, Stone 2005]



Machine learning
Feed-forward neural network
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Collecting all parameters 8 = (61, ...,0y) € RM
Stochastic gradient descent / empirical risk minimization

Ony1 =0, — nv9/(9nawn)v

Scaling limits: Small learning rate 7, overparametrization M — co.
Empirical distribution u}! := & 37, 85 — pe solution to

Bepue = div(VV (e, -Jue) + D? - (A(pe, -)pae) + Vodiv(T (ue, - )ué),

where ¢ is space-time white noise and V/, A, T, are non-local operators, see [Chen,
Rotskoff, Bruna, Vanden-Eijnden, 2020].



From large deviations to parabolic-hyperbolic PDE with irregular drift




Recall: Rare events are the (im-)probability to observe a fluctuation p:
Plu’ ~ ]=eN0) N large
A bit more precisely, for every U, O closed, open sets

]P)[,LLN c u] S efN inf,cu 1(p)
e—N inf,co I(p) SP[/JN z O]

Zero range process

5
1(p) = inf{/o /T 812 dxdt : 9ip = D ®(p) + Ox(P2 (p)g)}-

"skeleton equation"



Theorem ([Large deviation principle, Kipnis, Olla, Varadhan; 1989 & Benois, Kipnis,
Landim; 1995])

For every U, O C D([0, T], M) closed, open sets resp. we have

P[MN z u] 5 e—N inf,cu 1(p)

e~ N infpco Talp) <P[u" € O]
where A is the set of nice fluctuations p = p dx with p a solution to
Orp = 0x®(p) + Ox(% (p)g)
for some g € C}2.

This is a frequently observed problem: E.g. Fluctuations around Boltzmann equation

[Rezakhanlou 1998], [Bodineau, Gallagher, Saint-Raymond, Simonella 2020].
Counter-examples for Boltzmann [Heydecker; 2021].

Problem: {3
I =1la?

Difficult: Open problem for the zero range process since [Benois, Kipnis, Landim;
1995].



Skeleton equation

0ep = D ®(p) + 0 (®Z(p) g ).
~—
eLz

o

How difficult is the well-posedness?
- Difficulty: Stable a-priori bound? LP framework does not work.

- Do we expect non-concentration of mass / well-posedness?

Scaling and criticality of the skeleton equation
Consider, ®(p) = p™,
atp = aXxpm A ax(pig)
with g € L{LP and pg € L..
Via rescaling (“zooming in"):
- p=q=2is critical.
- r =1 is critical, r > 1 is supercritical.



Literature:
- [Le Bris, Lions; CPDE 2008]
1 2 * .
Ocp = 5D%: (007 p) +div(pg)
needs g € W,iclx divg €L, 0*Vpe L,
- [Karlsen, Risebro; 2003], [Wang, Wang, Li; 2013], [Barbu, Réckner; 2021],

roughly speaking
Oep = AD(p) + div(V(p)g)

for g € W2t divg € L°, W locally Lipschitz.

loc,x*



Overview of ingredients of the proof:

- Part 1: Apriori-bounds; entropy-entropy dissipation estimates
- Part 2: Extending the concepts of DiPerna-Lions, Ambrosio, Le Bris-Lions
to nonlinear PDE (but going beyond).

- Part 3: Uniqueness for renormalized entropy solutions (variable doubling):
New treatment of kinetic dissipation measure. Exploit finite singular
moments.



Part 1: Apriori-bounds

- Consider
Oip = Ap™ +div(pzg) on R, x T? *)
with g € 2, m € [1,00). E.g.

Orp = Ap+ div(p%g).

- Use entropy-entropy dissipation: Evolution of entropy given by [, log(p)p.

Informally gives
- t - i3
[roeols+ [ [wotrs [ ] e

- Caution: Can only be true for non-negative solutions.
- Non-standard weak solutions, rewriting (x) as

dep = 2div(p% Vp?) + div(p? g)
=div(p? (2Vp? + g ))
D N
el €Lz,

- Stability in the control: for g — g in Lf,x by compactness p* — p weak
solution to ().
- Conclusion: Have to prove uniqueness within this class of solutions.



Part 2: Renormalization
Recall: The linear setting,
[DiPerna, Lions, Invent. Math. 1989; Ambrosio Invent. Math. 2004]

9ep = div(pg).
Then p is a renormalized solution, if for all smooth f we have
9:f(p) = div(f(p)g) — (f(p) — f'(p)p)divg.

For two solutions p', p? let p = p* — p?. If p is renormalized, using, by approxi-
mation f(p) = |p| we get

9 / 1ol = / div(lplg) = (Io] - sgn(p)p)div = 0.

This can be made rigorous for g € BV (R?) (for renormalization), divg € L>(R)
(for existence).



Let p be a weak solution to
drp =2div(p2 Vp?) +div(pzg) on Ry x T

Show that every weak solution is a kinetic solution

(conjoining renormalization [DiPerna, Lions; Ambrosio] with kinetic solutions [Lions,
Perthame, Tadmor, J. Amer. Math. Soc. 1994]).

Let

X(t>X7f) = fé(P(X, t)) = 10<§<p(x,t) b= 1p(x,t)<§<0-

Then, informally,

Oex = mE™ M A — g(x, 1)(0e2 )Vix + (Vg (x, t))E2 0ex + Ocq

with p parabolic defect measure
q=06(¢— p(x, 1))V 2.



- How to make that rigorous? Take convolution
P° = ¢ xc p.

- Commutator errors,

0:p° = ¢ x Op = ¢ x (Ap +div(p% g))
= A(¢F * p™) +div(e * (p% g))
= A(p° )”" +div((p°)% g)
+ A" *p") = A(p")"
+div((¢7 * p¥)g) — div((p°) % g)
+div(e® * (p%g)) — div((¢° * p%)g).
- Note: Additional commutator errors by commuting convolution and nonlin-
earities!
- Commutator estimate using non-standard (optimal) regularity p? € L2 H!

- Additional renormalization step to compensate low time integrability p2z g €
LIPS



Theorem
A function p € L° L} is a weak solution to

Oep = 2div(pz Vp?) + div(p? g)

if and only if p is a renormalized entropy solution (kinetic solution).



Part 3: Uniqueness for renormalized entropy solutions (variable doubling)
- Established arguments [Chen, Perthame; 2003] not applicable.
- Additional errors from space-inhomogeneity (with little regularity)
- Note: Entropy dissipation measure
em
gm—1

4, €, 1) = cmd(€ = p(x, £))[ V0 E 2 = cnb(€ — p(x, 8)) g V3 |

does not satisfy
lim / q(x, &, t) dxdt = 0.
t,x

|§]—o00

- Only finite singular moment

/ €7 q(x, &, t) dédxdt < co.
t,x,&

%)



Theorem (The skeleton equation, Fehrman, G. 2022)

Let g € L7, po non-negative and [ polog(po)dx < co. There is a unique weak
solution to .
Oep = AP(p) + V - (®2(p)g).

1

The map g — p, L3, — L}, is weak-strong continuous. E.g. including all

®(p) = p™, m € [1,00).

Theorem (LDP for zero range process, G., Heydecker, 2023)

The rescaled zero range process satisfies the full large deviations principle with
rate function

il
1) = 5100~ DO,



Content:

- Toy model: Zero range process and (nonlinear) diffusion equations
» Relevance of fluctuations

» Gradient flows and fluctuation-dissipation principle - SPDEs
» Large deviations and PDEs with irregular coefficients

- Landau-Lifschitz Navier-Stokes equations, and their large deviations



Thermal fluctuations in fluids: Landau-Lifschitz-Navier-Stokes




Real fluids have small (thermodynamics) fluctuations on small scales.

Central question: What should the fluctuations (large deviations) around (NSE)
be?

Landau-Lifschitz: Physical arguments suggest to add a noise term —/eV - &, for
a divergence-free white noise £. That leads to

Oru=Au—P((u-V)u) — eV -& div(u) =0

GENERIC & fluctuation dissipation:

4} S,

=:M(u) e
JAN

o (w)—P((u- V)u) - Ve

@)

Oiu = £, div(u) =0,

with E(u) = % [ |u?dx. Gibbs measure is Te~¢ “E(w) dy.

Quastel and Yau: Derivation of Leray-Hopf solutions from a stochastic lattice
gas & large deviations.

Question: How are they related?



Quastel and Yau [Ann. Math. 1998]: stochastic lattice gas

Number of particles at position x with velocity v is 7(x,v) € {0,1}. Dynamics
are given as a joint exclusion process with average velocity v, and a collision
operator. Get a pure jump Markov process 7(x, v, t). The momentum is

B Gy, T=1. ,d-

with empirical momentum density

it dy) = <473 bou(dyYi(n)(x. e 28).

We then let P. be the distribution of the trajectories 1;(t, dy) € L2([0, T]; H~2).
Theorem (Quastel, Yau; 1998)

Assume that the initial conditions 1(0,-) are in local equilibrium with slowly
varying function uy € L2, d > 3. Then P. is tight in P(L%(0, T; H=2)) with
weak topology, and any limit point P is supported entirely on weak solutions to
the incompressible Navier-Stokes equations.



Fluctuations: Let
N i@y () (L2H ).

and i
I(u) = EHat“ + P(u- Vu) = Aulfa 11

Let the set of nice fluctuations be given by

Ao = {u: H”||L°°(0,T;H) < 00, |‘u‘|i2(0,T;V) < oo, ”at“”B(o,T;v/) < 00, HP(”‘V“)HB(O,T;v’)
Definition
The I-closure of a set Ay C X is defined by
— =) Q) (n)
A=A = s E XA Ay, i =i 1) — I(u) (1)

so that A is the maximal set on which / agrees with the lower semicontinuous
envelope of its restriction to Ag.



Theorem (Quastel, Yau; 1998)

With the static rate function ls:,+(uo) the total rate function is
Z(u) = lstar(u(0,)) + I(u).

Then, P. has the restricted large deviations principle

limsupe?~2log P.(U) < — inf Z(uv)
e—0 uel

. o d—2 B
|I2T‘Iﬁl(r)1f€ log P.(O) > uel{}fﬂl(u).



Informal large deviations for Landau-Lifschitz-Navier-Stokes: Pretend that the
contraction principle is applicable to

Oru=Au—P((u-V)u) — VeV -& div(u) =0.

Informally applying the contraction principle to the solution map F : /e — u
yields as a rate function

I(u) = inf{l(g) : F(g) = u}.

Schilder's theorem for Brownian sheet: I¢(g) = 3 fo Jr 1817 dxdt. Get

: 2 : =Au—P((u-V)u) —
nf{/0 /Td\g| dxdt ;. Oru = Au— P((u- V)u) Vg}

Hatu ot AU an P((U V)U)“Lz 0,T; V’)

I(u) =

I\J\l—‘ I\J\

How to make any of this rigorous?



Recall
Oru=Au—P((u-V)u) — eV - &, div(u) =0.

Supercritical SPDE, and cannot be renormalised: Replace & — &°, correlations
on length § < 1 and consider the joint scaling limit 6 = 6(¢) — 0.

Proposition

For any €,6 > 0, there exists a weak Leray-Hopf solution to

O’ = AuS® —P((u®° - V)uf®) — /eV - €,  div(u™) = 0.



Main Result: (restricted) LDP: Challenge for proving an LDP: No uniqueness for
the LLNSE is known.

Note: No nontrivial LDP for strong solutions

Theorem (G.-Heydecker-Wu)
Under a scaling relation on ¢, d, for any closed Y C X, O C X open

l logP (u™° € U) < — inf T
imsuplog P (u ) < — inf Z(u)

l logP (v° € O) > — inf Z(u),
imsuplog P (u )2~ inf T(u)

where Cy is any weak-strong uniqueness class and C is its Z-closure.



Definition

We say that Cy C X satisfies the weak-strong uniqueness property if, whenever

u € Go,v € X are weak solutions to the skeleton equation
Oru=Au—P((u-V)u)—V-g, div(u)=0

for the same g and the same initial data u(0) = v(0), and v satisfies the energy
inequality

1 3 1 3
S+ [ Vs < Slnl+ [ (7v.2)ds ©)

then u = v.
Eg. Co= L?,x-



LDP: Interpretation

The rate function is the same one found by Quastel-Yau:

Links lattice gas to SPDE, see (Dirr-Fehrman-Gess, 19), (Fehrman-Gess, 21),
(Gess-Heydecker, 23).

We can see (LLNS) as a numerical method for the lattice gas with nicer sample
paths (U? € X)...

or, if we view (LLNS) as the physical equation, this shows the physicality of the
lattice-gas MFT.



From large deviations and weak-strong uniqueness to the energy equality:
Literature: Several conditions known that give weak-strong uniqueness, e.g. LPS
condition

qf 2
ue LIl with = +=<1 p>d.
P q

For these conditions it is also known that u satisfies the energy equality.

But: A direct implication between the energy equality and weak-strong uniqueness
is not known.



Theorem (From LDP to Energy Equality)

Let C be the Z-closure of a weak-strong uniqueness class Cqy for the forced
Navier-Stokes / Skeleton equation. Let R C C and assume that SR =R,
with Tru(t, x) := —u(T — t,x). Then, u € R with finite rate will satisfy the
energy equality

Sl + [ IVute)fet = 31O+ [ (Vug)et.

Hence: time-symmetric conditions (L7 L9, WP W?5:9......) which give weak-strong
uniqueness also give the energy equality.

Corollary

Let u be a weak Leray-Hopf solution satisfying weak-strong uniqueness. Assume
that Tru satisfies weak-strong uniqueness. Then u satisfies the energy equality.



References

E B. Fehrman and B. Gess.
Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift.

E B. Gess and D. Heydecker.
A Rescaled Zero-Range Process for the Porous Medium Equation: Hydrodynamic Limit,
Large Deviations and Gradient Flow.

E B. Gess, D. Heydecker, and Z. Wu.
Large Deviations for the Landau-Lifschitz-Navier-Stokes Equations.



	From interacting particle systems to conservative SPDEs
	From large deviations to parabolic-hyperbolic PDE with irregular drift
	Parabolic-hyperbolic PDE with irregular drift
	Thermal fluctuations in fluids

